|
- # Copyright 2021-2022 The Alibaba DAMO NLP Team Authors.
- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
- # All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Fast Tokenization classes for Sbert. mainly copied from :module:`~transformers.tokenization_bert_fast`"""
-
- from typing import List, Optional, Tuple
-
- import json
- import transformers
- from tokenizers import normalizers
- from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
-
- from modelscope.utils.logger import get_logger
- from .tokenization_sbert import SbertTokenizer
-
- logger = get_logger(__name__)
-
- VOCAB_FILES_NAMES = {
- 'vocab_file': 'vocab.txt',
- 'tokenizer_file': 'tokenizer.json'
- }
-
- PRETRAINED_VOCAB_FILES_MAP = {
- 'vocab_file': {},
- 'tokenizer_file': {},
- }
-
- PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
- 'chinese_sbert-large-std-512': 512,
- 'english_sbert-large-std-512': 512,
- }
-
- PRETRAINED_INIT_CONFIGURATION = {
- 'english_sbert-large-std-512': {
- 'do_lower_case': True
- },
- }
-
- transformers.SLOW_TO_FAST_CONVERTERS[
- 'SbertTokenizer'] = transformers.SLOW_TO_FAST_CONVERTERS['BertTokenizer']
-
-
- class SbertTokenizerFast(PreTrainedTokenizerFast):
- r"""
- Construct a "fast" SBERT tokenizer (backed by HuggingFace's `tokenizers` library). Based on WordPiece.
-
- This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
- methods. Users should refer to this superclass for more information regarding those methods.
-
- Args:
- vocab_file (:obj:`str`):
- File containing the vocabulary.
- do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
- Whether or not to lowercase the input when tokenizing.
- unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
- The token used for padding, for example when batching sequences of different lengths.
- cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- clean_text (:obj:`bool`, `optional`, defaults to :obj:`True`):
- Whether or not to clean the text before tokenization by removing any control characters and replacing all
- whitespaces by the classic one.
- tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
- Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see `this
- issue <https://github.com/huggingface/transformers/issues/328>`__).
- strip_accents: (:obj:`bool`, `optional`):
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
- value for :obj:`lowercase` (as in the original BERT).
- wordpieces_prefix: (:obj:`str`, `optional`, defaults to :obj:`"##"`):
- The prefix for subwords.
- """
-
- vocab_files_names = VOCAB_FILES_NAMES
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
- pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
- max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
- slow_tokenizer_class = SbertTokenizer
-
- def __init__(self,
- vocab_file=None,
- tokenizer_file=None,
- do_lower_case=True,
- unk_token='[UNK]',
- sep_token='[SEP]',
- pad_token='[PAD]',
- cls_token='[CLS]',
- mask_token='[MASK]',
- tokenize_chinese_chars=True,
- strip_accents=None,
- **kwargs):
- super().__init__(
- vocab_file,
- tokenizer_file=tokenizer_file,
- do_lower_case=do_lower_case,
- unk_token=unk_token,
- sep_token=sep_token,
- pad_token=pad_token,
- cls_token=cls_token,
- mask_token=mask_token,
- tokenize_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- **kwargs,
- )
-
- pre_tok_state = json.loads(
- self.backend_tokenizer.normalizer.__getstate__())
- if (pre_tok_state.get('lowercase', do_lower_case) != do_lower_case
- or pre_tok_state.get('strip_accents',
- strip_accents) != strip_accents):
- pre_tok_class = getattr(normalizers, pre_tok_state.pop('type'))
- pre_tok_state['lowercase'] = do_lower_case
- pre_tok_state['strip_accents'] = strip_accents
- self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
-
- self.do_lower_case = do_lower_case
-
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A SBERT sequence has the following format:
-
- - single sequence: ``[CLS] X [SEP]``
- - pair of sequences: ``[CLS] A [SEP] B [SEP]``
-
- Args:
- token_ids_0 (:obj:`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (:obj:`List[int]`, `optional`):
- Optional second list of IDs for sequence pairs.
-
- Returns:
- :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
- """
- output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
-
- if token_ids_1:
- output += token_ids_1 + [self.sep_token_id]
-
- return output
-
- def create_token_type_ids_from_sequences(
- self,
- token_ids_0: List[int],
- token_ids_1: Optional[List[int]] = None) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. A SBERT sequence
- pair mask has the following format:
-
- ::
-
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
-
- If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
-
- Args:
- token_ids_0 (:obj:`List[int]`):
- List of IDs.
- token_ids_1 (:obj:`List[int]`, `optional`):
- Optional second list of IDs for sequence pairs.
-
- Returns:
- :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
- sequence(s).
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1
- + sep) * [1]
-
- def save_vocabulary(self,
- save_directory: str,
- filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(
- save_directory, name=filename_prefix)
- return tuple(files)
|