|
- # Copyright 2021-2022 The Alibaba DAMO NLP Team Authors.
- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- # All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ SBERT model configuration, mainly copied from :class:`~transformers.BertConfig` """
- from transformers import PretrainedConfig
-
- from modelscope.utils import logger as logging
-
- logger = logging.get_logger(__name__)
-
-
- class SbertConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration
- of a :class:`~modelscope.models.nlp.structbert.SbertModel`.
- It is used to instantiate a SBERT model according to the specified arguments.
-
- Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
- outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
-
-
- Args:
- vocab_size (:obj:`int`, `optional`, defaults to 30522):
- Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
- :obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or
- :class:`~transformers.TFBertModel`.
- hidden_size (:obj:`int`, `optional`, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (:obj:`int`, `optional`, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- intermediate_size (:obj:`int`, `optional`, defaults to 3072):
- Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
- hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string,
- :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
- hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- type_vocab_size (:obj:`int`, `optional`, defaults to 2):
- The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or
- :class:`~transformers.TFBertModel`.
- initializer_range (:obj:`float`, `optional`, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
- Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
- :obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
- :obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
- <https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
- `Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
- <https://arxiv.org/abs/2009.13658>`__.
- use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if ``config.is_decoder=True``.
- classifier_dropout (:obj:`float`, `optional`):
- The dropout ratio for the classification head.
- adv_grad_factor (:obj:`float`, `optional`): This factor will be multipled by the KL loss grad and then
- the result will be added to the original embedding.
- More details please check:https://arxiv.org/abs/1908.04577
- The range of this value always be 1e-3~1e-7
- adv_bound (:obj:`float`, `optional`): adv_bound is used to cut the top and the bottom bound of
- the produced embedding.
- If not proveded, 2 * sigma will be used as the adv_bound factor
- sigma (:obj:`float`, `optional`): The std factor used to produce a 0 mean normal distribution.
- If adv_bound not proveded, 2 * sigma will be used as the adv_bound factor
- """
-
- model_type = 'sbert'
-
- def __init__(self,
- vocab_size=30522,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act='gelu',
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=2,
- initializer_range=0.02,
- layer_norm_eps=1e-12,
- pad_token_id=0,
- position_embedding_type='absolute',
- use_cache=True,
- classifier_dropout=None,
- **kwargs):
- super().__init__(pad_token_id=pad_token_id, **kwargs)
-
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.hidden_act = hidden_act
- self.intermediate_size = intermediate_size
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- self.position_embedding_type = position_embedding_type
- self.use_cache = use_cache
- self.classifier_dropout = classifier_dropout
- # adv_grad_factor, used in adv loss.
- # Users can check adv_utils.py for details.
- # if adv_grad_factor set to None, no adv loss will not applied to the model.
- self.adv_grad_factor = 5e-5 if 'adv_grad_factor' not in kwargs else kwargs[
- 'adv_grad_factor']
- # sigma value, used in adv loss.
- self.sigma = 5e-6 if 'sigma' not in kwargs else kwargs['sigma']
- # adv_bound value, used in adv loss.
- self.adv_bound = 2 * self.sigma if 'adv_bound' not in kwargs else kwargs[
- 'adv_bound']
|