|
- import time
-
- import cv2
- import numpy as np
-
- from .config import config as cfg
- from .face_detector import FaceDetector
- from .face_landmark import FaceLandmark
- from .LK.lk import GroupTrack
-
-
- class FaceAna():
- '''
- by default the top3 facea sorted by area will be calculated for time reason
- '''
-
- def __init__(self, model_dir):
- self.face_detector = FaceDetector(model_dir)
- self.face_landmark = FaceLandmark(model_dir)
- self.trace = GroupTrack()
-
- self.track_box = None
- self.previous_image = None
- self.previous_box = None
-
- self.diff_thres = 5
- self.top_k = cfg.DETECT.topk
- self.iou_thres = cfg.TRACE.iou_thres
- self.alpha = cfg.TRACE.smooth_box
-
- def run(self, image):
-
- boxes = self.face_detector(image)
-
- if boxes.shape[0] > self.top_k:
- boxes = self.sort(boxes)
-
- boxes_return = np.array(boxes)
- landmarks, states = self.face_landmark(image, boxes)
-
- if 1:
- track = []
- for i in range(landmarks.shape[0]):
- track.append([
- np.min(landmarks[i][:, 0]),
- np.min(landmarks[i][:, 1]),
- np.max(landmarks[i][:, 0]),
- np.max(landmarks[i][:, 1])
- ])
- tmp_box = np.array(track)
-
- self.track_box = self.judge_boxs(boxes_return, tmp_box)
-
- self.track_box, landmarks = self.sort_res(self.track_box, landmarks)
- return self.track_box, landmarks, states
-
- def sort_res(self, bboxes, points):
- area = []
- for bbox in bboxes:
- bbox_width = bbox[2] - bbox[0]
- bbox_height = bbox[3] - bbox[1]
- area.append(bbox_height * bbox_width)
-
- area = np.array(area)
- picked = area.argsort()[::-1]
- sorted_bboxes = [bboxes[x] for x in picked]
- sorted_points = [points[x] for x in picked]
- return np.array(sorted_bboxes), np.array(sorted_points)
-
- def diff_frames(self, previous_frame, image):
- if previous_frame is None:
- return True
- else:
- _diff = cv2.absdiff(previous_frame, image)
- diff = np.sum(
- _diff) / previous_frame.shape[0] / previous_frame.shape[1] / 3.
- return diff > self.diff_thres
-
- def sort(self, bboxes):
- if self.top_k > 100:
- return bboxes
- area = []
- for bbox in bboxes:
-
- bbox_width = bbox[2] - bbox[0]
- bbox_height = bbox[3] - bbox[1]
- area.append(bbox_height * bbox_width)
-
- area = np.array(area)
-
- picked = area.argsort()[-self.top_k:][::-1]
- sorted_bboxes = [bboxes[x] for x in picked]
- return np.array(sorted_bboxes)
-
- def judge_boxs(self, previuous_bboxs, now_bboxs):
-
- def iou(rec1, rec2):
-
- # computing area of each rectangles
- S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
- S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
-
- # computing the sum_area
- sum_area = S_rec1 + S_rec2
-
- # find the each edge of intersect rectangle
- x1 = max(rec1[0], rec2[0])
- y1 = max(rec1[1], rec2[1])
- x2 = min(rec1[2], rec2[2])
- y2 = min(rec1[3], rec2[3])
-
- # judge if there is an intersect
- intersect = max(0, x2 - x1) * max(0, y2 - y1)
-
- return intersect / (sum_area - intersect)
-
- if previuous_bboxs is None:
- return now_bboxs
-
- result = []
-
- for i in range(now_bboxs.shape[0]):
- contain = False
- for j in range(previuous_bboxs.shape[0]):
- if iou(now_bboxs[i], previuous_bboxs[j]) > self.iou_thres:
- result.append(
- self.smooth(now_bboxs[i], previuous_bboxs[j]))
- contain = True
- break
- if not contain:
- result.append(now_bboxs[i])
-
- return np.array(result)
-
- def smooth(self, now_box, previous_box):
-
- return self.do_moving_average(now_box[:4], previous_box[:4])
-
- def do_moving_average(self, p_now, p_previous):
- p = self.alpha * p_now + (1 - self.alpha) * p_previous
- return p
-
- def reset(self):
- '''
- reset the previous info used foe tracking,
- :return:
- '''
- self.track_box = None
- self.previous_image = None
- self.previous_box = None
|