|
- # Copyright (c) Alibaba, Inc. and its affiliates.
-
- import unittest
-
- import numpy as np
-
- from modelscope.metrics.token_classification_metric import \
- TokenClassificationMetric
- from modelscope.utils.test_utils import test_level
-
-
- class TestTokenClsMetrics(unittest.TestCase):
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_value(self):
- metric = TokenClassificationMetric()
-
- class Trainer:
- pass
-
- metric.trainer = Trainer()
- metric.trainer.label2id = {
- 'B-obj': 0,
- 'I-obj': 1,
- 'O': 2,
- }
-
- outputs = {
- 'logits':
- np.array([[[2.0, 1.0, 0.5], [1.0, 1.5, 1.0], [2.0, 1.0, 3.0],
- [2.4, 1.5, 4.0], [2.0, 1.0, 3.0], [2.4, 1.5, 1.7],
- [2.0, 1.0, 0.5], [2.4, 1.5, 0.5]]])
- }
- inputs = {'labels': np.array([[0, 1, 2, 2, 0, 1, 2, 2]])}
- metric.add(outputs, inputs)
- ret = metric.evaluate()
- self.assertTrue(np.isclose(ret['precision'], 0.25))
- self.assertTrue(np.isclose(ret['recall'], 0.5))
- self.assertTrue(np.isclose(ret['accuracy'], 0.5))
- print(ret)
-
-
- if __name__ == '__main__':
- unittest.main()
|