|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.models import Model
- from modelscope.models.nlp import TransformerCRFForNamedEntityRecognition
- from modelscope.pipelines import pipeline
- from modelscope.pipelines.nlp import NamedEntityRecognitionPipeline
- from modelscope.preprocessors import NERPreprocessor
- from modelscope.utils.constant import Tasks
- from modelscope.utils.test_utils import test_level
-
-
- class NamedEntityRecognitionTest(unittest.TestCase):
- model_id = 'damo/nlp_transformercrf_named-entity-recognition_chinese-base-news'
- sentence = '这与温岭市新河镇的一个神秘的传说有关。'
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_by_direct_model_download(self):
- cache_path = snapshot_download(self.model_id)
- tokenizer = NERPreprocessor(cache_path)
- model = TransformerCRFForNamedEntityRecognition(
- cache_path, tokenizer=tokenizer)
- pipeline1 = NamedEntityRecognitionPipeline(
- model, preprocessor=tokenizer)
- pipeline2 = pipeline(
- Tasks.named_entity_recognition,
- model=model,
- preprocessor=tokenizer)
- print(f'sentence: {self.sentence}\n'
- f'pipeline1:{pipeline1(input=self.sentence)}')
- print()
- print(f'pipeline2: {pipeline2(input=self.sentence)}')
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.model_id)
- tokenizer = NERPreprocessor(model.model_dir)
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=model,
- preprocessor=tokenizer)
- print(pipeline_ins(input=self.sentence))
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.model_id)
- print(pipeline_ins(input=self.sentence))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_default_model(self):
- pipeline_ins = pipeline(task=Tasks.named_entity_recognition)
- print(pipeline_ins(input=self.sentence))
-
-
- if __name__ == '__main__':
- unittest.main()
|