|
- # Copyright (c) Alibaba, Inc. and its affiliates.
-
- import os
- from typing import Any, Dict, Optional
-
- from modelscope.metainfo import Models
- from modelscope.models.base import Model, Tensor
- from modelscope.models.builder import MODELS
- from modelscope.preprocessors.space.fields.gen_field import \
- MultiWOZBPETextField
- from modelscope.utils.config import Config
- from modelscope.utils.constant import ModelFile, Tasks
- from .backbones import SpaceGenerator, SpaceModelBase
-
- __all__ = ['SpaceForDialogModeling']
-
-
- @MODELS.register_module(Tasks.dialog_modeling, module_name=Models.space)
- class SpaceForDialogModeling(Model):
-
- def __init__(self, model_dir: str, *args, **kwargs):
- """initialize the test generation model from the `model_dir` path.
-
- Args:
- model_dir (str): the model path.
- """
-
- super().__init__(model_dir, *args, **kwargs)
- from ...trainers.nlp.space.trainer.gen_trainer import MultiWOZTrainer
- self.model_dir = model_dir
- self.config = kwargs.pop(
- 'config',
- Config.from_file(
- os.path.join(self.model_dir, ModelFile.CONFIGURATION)))
-
- import torch
- self.config.use_gpu = self.config.use_gpu and torch.cuda.is_available()
-
- self.text_field = kwargs.pop(
- 'text_field',
- MultiWOZBPETextField(self.model_dir, config=self.config))
- self.generator = SpaceGenerator.create(
- self.config, reader=self.text_field)
- self.model = SpaceModelBase.create(
- model_dir=model_dir,
- config=self.config,
- reader=self.text_field,
- generator=self.generator)
-
- def to_tensor(array):
- """
- numpy array -> tensor
- """
- import torch
- array = torch.tensor(array)
- return array.cuda() if self.config.use_gpu else array
-
- self.trainer = MultiWOZTrainer(
- model=self.model,
- to_tensor=to_tensor,
- config=self.config,
- reader=self.text_field,
- evaluator=None)
- self.trainer.load()
-
- def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]:
- """return the result by the model
-
- Args:
- input (Dict[str, Tensor]): the preprocessed data
-
- Returns:
- Dict[str, Tensor]: results
- Example:
- {
- 'labels': array([1,192,321,12]), # lable
- 'resp': array([293,1023,123,1123]), #vocab label for response
- 'bspn': array([123,321,2,24,1 ]),
- 'aspn': array([47,8345,32,29,1983]),
- 'db': array([19, 24, 20]),
- }
- """
-
- first_turn = input['first_turn']
- batch = input['batch']
- prompt_id = input['prompt_id']
- labels = input['labels']
- old_pv_turn = input['history']
-
- pv_turn = self.trainer.forward(
- first_turn=first_turn,
- batch=batch,
- prompt_id=prompt_id,
- labels=labels,
- old_pv_turn=old_pv_turn)
-
- return pv_turn
|