|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.models import Model
- from modelscope.models.nlp import (LSTMCRFForNamedEntityRecognition,
- TransformerCRFForNamedEntityRecognition)
- from modelscope.pipelines import pipeline
- from modelscope.pipelines.nlp import NamedEntityRecognitionPipeline
- from modelscope.preprocessors import \
- TokenClassificationTransformersPreprocessor
- from modelscope.utils.constant import Tasks
- from modelscope.utils.demo_utils import DemoCompatibilityCheck
- from modelscope.utils.test_utils import test_level
-
-
- class NamedEntityRecognitionTest(unittest.TestCase, DemoCompatibilityCheck):
- language_examples = {
- 'zh':
- '新华社北京二月十一日电(记者唐虹)',
- 'en':
- 'Italy recalled Marcello Cuttitta',
- 'ru':
- 'важным традиционным промыслом является производство пальмового масла .',
- 'fr':
- 'fer à souder électronique',
- 'es':
- 'el primer avistamiento por europeos de esta zona fue en 1606 , '
- 'en la expedición española mandada por luis váez de torres .',
- 'nl':
- 'in het vorige seizoen promoveerden sc cambuur , dat kampioen werd en go ahead eagles via de play offs .',
- 'tr':
- 'köyün pırasa kavurması ve içi yağlama ve akıtma adındaki hamur işleri meşhurdur . ; çörek ekmeği ; '
- 'diye adlandırdıkları mayasız ekmeği unutmamaklazım .',
- 'ko':
- '국립진주박물관은 1984년 11월 2일 개관하였으며 한국 전통목조탑을 석조 건물로 형상화한 것으로 건축가 김수근 선생의 대표적 작품이다 .',
- 'fa':
- 'ﺞﻤﻋیﺕ ﺍیﻥ ﺎﺴﺗﺎﻧ ۳۰ ﻩﺯﺍﺭ ﻦﻓﺭ ﺎﺴﺗ ﻭ ﻢﻧﺎﺒﻋ ﻢﻬﻣی ﺍﺯ ﺲﻧگ ﺂﻬﻧ ﺩﺍﺭﺩ .',
- 'de':
- 'die szene beinhaltete lenny baker und christopher walken .',
- 'hi':
- '१४९२ में एक चार्टर के आधार पर, उसके पिता ने उसे वाडोविस के उत्तराधिकारी के रूप में छोड़ दिया।',
- 'bn':
- 'যদিও গির্জার সবসময় রাজকীয় পিউ থাকত, তবে গির্জায় রাজকীয়ভাবে এটিই ছিল প্রথম দেখা।',
- 'multi':
- '新华社北京二月十一日电(记者唐虹)',
- }
-
- all_modelcards_info = [
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-news',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-social_media',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-generic',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-resume',
- 'language': 'zh'
- },
- {
- 'model_id': 'damo/nlp_lstm_named-entity-recognition_chinese-news',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_lstm_named-entity-recognition_chinese-social_media',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_lstm_named-entity-recognition_chinese-generic',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_lstm_named-entity-recognition_chinese-resume',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-book',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-finance',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-game',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-bank',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-literature',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-cmeee',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-news',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-social_media',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-literature',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-politics',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-music',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-science',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-ai',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-wiki',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-large-generic',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-generic',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_multilingual-large-generic',
- 'language': 'multi'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_russian-large-generic',
- 'language': 'ru'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_spanish-large-generic',
- 'language': 'es'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_dutch-large-generic',
- 'language': 'nl'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_turkish-large-generic',
- 'language': 'tr'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_korean-large-generic',
- 'language': 'ko'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_farsi-large-generic',
- 'language': 'fa'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_german-large-generic',
- 'language': 'de'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_hindi-large-generic',
- 'language': 'hi'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_bangla-large-generic',
- 'language': 'bn'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-ecom',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_chinese-base-ecom-50cls',
- 'language': 'zh'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_english-large-ecom',
- 'language': 'en'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_russian-large-ecom',
- 'language': 'ru'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_french-large-ecom',
- 'language': 'fr'
- },
- {
- 'model_id':
- 'damo/nlp_raner_named-entity-recognition_spanish-large-ecom',
- 'language': 'es'
- },
- {
- 'model_id':
- 'damo/nlp_structbert_keyphrase-extraction_base-icassp2023-mug-track4-baseline',
- 'language': 'zh'
- },
- ]
-
- def setUp(self) -> None:
- self.task = Tasks.named_entity_recognition
- self.model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
- self.english_model_id = 'damo/nlp_raner_named-entity-recognition_english-large-ecom'
- self.chinese_model_id = 'damo/nlp_raner_named-entity-recognition_chinese-large-generic'
- self.tcrf_model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
- self.lcrf_model_id = 'damo/nlp_lstm_named-entity-recognition_chinese-news'
- self.addr_model_id = 'damo/nlp_structbert_address-parsing_chinese_base'
- self.lstm_model_id = 'damo/nlp_lstm_named-entity-recognition_chinese-generic'
- self.sentence = '这与温岭市新河镇的一个神秘的传说有关。[SEP]地名'
- self.sentence_en = 'pizza shovel'
- self.sentence_zh = '他 继 续 与 貝 塞 斯 達 遊 戲 工 作 室 在 接 下 来 辐 射 4 游 戏 。'
- self.addr = '浙江省杭州市余杭区文一西路969号亲橙里'
- self.addr1 = '浙江省西湖区灵隐隧道'
- self.addr2 = '内蒙古自治区巴彦淖尔市'
- self.ecom = '欧美单 秋季女装时尚百搭休闲修身 亚麻混纺短款 外套西装'
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_tcrf_by_direct_model_download(self):
- cache_path = snapshot_download(self.tcrf_model_id)
- tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
- model = TransformerCRFForNamedEntityRecognition(
- cache_path, tokenizer=tokenizer)
- pipeline1 = NamedEntityRecognitionPipeline(
- model, preprocessor=tokenizer)
- pipeline2 = pipeline(
- Tasks.named_entity_recognition,
- model=model,
- preprocessor=tokenizer)
- print(f'sentence: {self.sentence}\n'
- f'pipeline1:{pipeline1(input=self.sentence)}')
- print()
- print(f'pipeline2: {pipeline2(input=self.sentence)}')
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_lcrf_by_direct_model_download(self):
- cache_path = snapshot_download(self.lcrf_model_id)
- tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
- model = LSTMCRFForNamedEntityRecognition(
- cache_path, tokenizer=tokenizer)
- pipeline1 = NamedEntityRecognitionPipeline(
- model, preprocessor=tokenizer)
- pipeline2 = pipeline(
- Tasks.named_entity_recognition,
- model=model,
- preprocessor=tokenizer)
- print(f'sentence: {self.sentence}\n'
- f'pipeline1:{pipeline1(input=self.sentence)}')
- print()
- print(f'pipeline2: {pipeline2(input=self.sentence)}')
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_tcrf_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.tcrf_model_id)
- tokenizer = TokenClassificationTransformersPreprocessor(
- model.model_dir)
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=model,
- preprocessor=tokenizer)
- print(pipeline_ins(input=self.sentence))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_addrst_with_model_from_modelhub(self):
- model = Model.from_pretrained(
- 'damo/nlp_structbert_address-parsing_chinese_base')
- tokenizer = TokenClassificationTransformersPreprocessor(
- model.model_dir)
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=model,
- preprocessor=tokenizer)
- print(pipeline_ins(input=self.addr))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_addrst_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.addr_model_id)
- print(pipeline_ins(input=self.addr))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_addrst_with_model_name_batch(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.addr_model_id)
- print(
- pipeline_ins(
- input=[self.addr, self.addr1, self.addr2], batch_size=2))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_addrst_with_model_name_batch_iter(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=self.addr_model_id,
- padding=False)
- print(pipeline_ins(input=[self.addr, self.addr1, self.addr2]))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_lcrf_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.lcrf_model_id)
- tokenizer = TokenClassificationTransformersPreprocessor(
- model.model_dir)
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=model,
- preprocessor=tokenizer)
- print(pipeline_ins(input=self.sentence))
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_tcrf_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.tcrf_model_id)
- print(pipeline_ins(input=self.sentence))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_lcrf_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.lcrf_model_id)
- print(pipeline_ins(input=self.sentence))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_lcrf_with_chinese_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.chinese_model_id)
- print(pipeline_ins(input=self.sentence_zh))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_lcrf_with_chinese_model_name_batch_iter(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=self.chinese_model_id,
- padding=False)
- print(
- pipeline_ins(input=[
- self.sentence_zh, self.sentence_zh[:20], self.sentence_zh[10:]
- ]))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_lcrf_with_chinese_model_name_batch(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.chinese_model_id)
- print(
- pipeline_ins(
- input=[
- self.sentence_zh, self.sentence_zh[:20],
- self.sentence_zh[10:]
- ],
- batch_size=2))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_lstm_with_chinese_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.lstm_model_id)
- print(pipeline_ins(input=self.sentence_zh))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_lstm_with_chinese_model_name_batch_iter(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=self.lstm_model_id,
- padding=False)
- print(
- pipeline_ins(input=[
- self.sentence_zh, self.sentence_zh[:20], self.sentence_zh[10:]
- ]))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_lstm_with_chinese_model_name_batch(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.lstm_model_id)
- print(
- pipeline_ins(
- input=[
- self.sentence_zh, self.sentence_zh[:20],
- self.sentence_zh[10:]
- ],
- batch_size=2))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_english_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.english_model_id)
- print(pipeline_ins(input=self.sentence_en))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_english_with_model_name_batch(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition, model=self.english_model_id)
- print(
- pipeline_ins(
- input=[self.ecom, self.sentence_zh, self.sentence],
- batch_size=2))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_english_with_model_name_batch_iter(self):
- pipeline_ins = pipeline(
- task=Tasks.named_entity_recognition,
- model=self.english_model_id,
- padding=False)
- print(pipeline_ins(input=[self.ecom, self.sentence_zh, self.sentence]))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_default_model(self):
- pipeline_ins = pipeline(task=Tasks.named_entity_recognition)
- print(pipeline_ins(input=self.sentence))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_all_modelcards(self):
- for item in self.all_modelcards_info:
- model_id = item['model_id']
- sentence = self.language_examples[item['language']]
- with self.subTest(model_id=model_id):
- pipeline_ins = pipeline(Tasks.named_entity_recognition,
- model_id)
- print(pipeline_ins(input=sentence))
-
- @unittest.skip('demo compatibility test is only enabled on a needed-basis')
- def test_demo_compatibility(self):
- self.compatibility_check()
-
-
- if __name__ == '__main__':
- unittest.main()
|