# Copyright (c) Alibaba, Inc. and its affiliates. import shutil import unittest from modelscope.hub.snapshot_download import snapshot_download from modelscope.models import Model from modelscope.models.nlp import BertForSentenceEmbedding from modelscope.pipelines import pipeline from modelscope.pipelines.nlp import SentenceEmbeddingPipeline from modelscope.preprocessors import SentenceEmbeddingPreprocessor from modelscope.utils.constant import Tasks from modelscope.utils.test_utils import test_level class SentenceEmbeddingTest(unittest.TestCase): model_id = 'damo/nlp_corom_sentence-embedding_english-base' inputs = { 'source_sentence': ["how long it take to get a master's degree"], 'sentences_to_compare': [ "On average, students take about 18 to 24 months to complete a master's degree.", 'On the other hand, some students prefer to go at a slower pace and choose to take ', 'several years to complete their studies.', 'It can take anywhere from two semesters' ] } inputs2 = { 'source_sentence': ["how long it take to get a master's degree"], 'sentences_to_compare': [ "On average, students take about 18 to 24 months to complete a master's degree." ] } inputs3 = { 'source_sentence': ["how long it take to get a master's degree"], 'sentences_to_compare': [] } @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_by_direct_model_download(self): cache_path = snapshot_download(self.model_id) tokenizer = SentenceEmbeddingPreprocessor(cache_path) model = BertForSentenceEmbedding.from_pretrained(cache_path) pipeline1 = SentenceEmbeddingPipeline(model, preprocessor=tokenizer) pipeline2 = pipeline( Tasks.sentence_embedding, model=model, preprocessor=tokenizer) print(f'inputs: {self.inputs}\n' f'pipeline1:{pipeline1(input=self.inputs)}') print() print(f'pipeline2: {pipeline2(input=self.inputs)}') print() print(f'inputs: {self.inputs2}\n' f'pipeline1:{pipeline1(input=self.inputs2)}') print() print(f'pipeline2: {pipeline2(input=self.inputs2)}') print(f'inputs: {self.inputs3}\n' f'pipeline1:{pipeline1(input=self.inputs3)}') print() print(f'pipeline2: {pipeline2(input=self.inputs3)}') @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_run_with_model_from_modelhub(self): model = Model.from_pretrained(self.model_id) tokenizer = SentenceEmbeddingPreprocessor(model.model_dir) pipeline_ins = pipeline( task=Tasks.sentence_embedding, model=model, preprocessor=tokenizer) print(pipeline_ins(input=self.inputs)) @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') def test_run_with_model_name(self): pipeline_ins = pipeline( task=Tasks.sentence_embedding, model=self.model_id) print(pipeline_ins(input=self.inputs)) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_default_model(self): pipeline_ins = pipeline(task=Tasks.sentence_embedding) print(pipeline_ins(input=self.inputs)) if __name__ == '__main__': unittest.main()