#!/usr/bin/env python # Copyright (c) Alibaba, Inc. and its affiliates. import argparse import datetime import math import multiprocessing import os import subprocess import sys import tempfile import time import unittest from fnmatch import fnmatch from multiprocessing.managers import BaseManager from pathlib import Path from turtle import shape from unittest import TestResult, TextTestResult import pandas # NOTICE: Tensorflow 1.15 seems not so compatible with pytorch. # A segmentation fault may be raise by pytorch cpp library # if 'import tensorflow' in front of 'import torch'. # Puting a 'import torch' here can bypass this incompatibility. import torch import yaml from modelscope.utils.logger import get_logger from modelscope.utils.model_tag import ModelTag, commit_model_ut_result from modelscope.utils.test_utils import (get_case_model_info, set_test_level, test_level) logger = get_logger() def test_cases_result_to_df(result_list): table_header = [ 'Name', 'Result', 'Info', 'Start time', 'Stop time', 'Time cost(seconds)' ] df = pandas.DataFrame( result_list, columns=table_header).sort_values( by=['Start time'], ascending=True) return df def statistics_test_result(df): total_cases = df.shape[0] # yapf: disable success_cases = df.loc[df['Result'] == 'Success'].shape[0] error_cases = df.loc[df['Result'] == 'Error'].shape[0] failures_cases = df.loc[df['Result'] == 'Failures'].shape[0] expected_failure_cases = df.loc[df['Result'] == 'ExpectedFailures'].shape[0] unexpected_success_cases = df.loc[df['Result'] == 'UnexpectedSuccesses'].shape[0] skipped_cases = df.loc[df['Result'] == 'Skipped'].shape[0] # yapf: enable if failures_cases > 0 or \ error_cases > 0 or \ unexpected_success_cases > 0: final_result = 'FAILED' else: final_result = 'SUCCESS' result_msg = '%s (Runs=%s,success=%s,failures=%s,errors=%s,\ skipped=%s,expected failures=%s,unexpected successes=%s)' % ( final_result, total_cases, success_cases, failures_cases, error_cases, skipped_cases, expected_failure_cases, unexpected_success_cases) model_cases = get_case_model_info() for model_name, case_info in model_cases.items(): cases = df.loc[df['Name'].str.contains('|'.join(list(case_info)))] results = cases['Result'] result = None if any(results == 'Error') or any(results == 'Failures') or any( results == 'UnexpectedSuccesses'): result = ModelTag.MODEL_FAIL elif any(results == 'Success'): result = ModelTag.MODEL_PASS elif all(results == 'Skipped'): result = ModelTag.MODEL_SKIP else: print(f'invalid results for {model_name} \n{result}') if result is not None: commit_model_ut_result(model_name, result) print('Testing result summary.') print(result_msg) if final_result == 'FAILED': sys.exit(1) def gather_test_suites_in_files(test_dir, case_file_list, list_tests): test_suite = unittest.TestSuite() for case in case_file_list: test_case = unittest.defaultTestLoader.discover( start_dir=test_dir, pattern=case) test_suite.addTest(test_case) if hasattr(test_case, '__iter__'): for subcase in test_case: if list_tests: print(subcase) else: if list_tests: print(test_case) return test_suite def gather_test_suites_files(test_dir, pattern): case_file_list = [] for dirpath, dirnames, filenames in os.walk(test_dir): for file in filenames: if fnmatch(file, pattern): case_file_list.append(file) return case_file_list def collect_test_results(case_results): result_list = [ ] # each item is Case, Result, Start time, Stop time, Time cost for case_result in case_results.successes: result_list.append( (case_result.test_full_name, 'Success', '', case_result.start_time, case_result.stop_time, case_result.time_cost)) for case_result in case_results.errors: result_list.append( (case_result[0].test_full_name, 'Error', case_result[1], case_result[0].start_time, case_result[0].stop_time, case_result[0].time_cost)) for case_result in case_results.skipped: result_list.append( (case_result[0].test_full_name, 'Skipped', case_result[1], case_result[0].start_time, case_result[0].stop_time, case_result[0].time_cost)) for case_result in case_results.expectedFailures: result_list.append( (case_result[0].test_full_name, 'ExpectedFailures', case_result[1], case_result[0].start_time, case_result[0].stop_time, case_result[0].time_cost)) for case_result in case_results.failures: result_list.append( (case_result[0].test_full_name, 'Failures', case_result[1], case_result[0].start_time, case_result[0].stop_time, case_result[0].time_cost)) for case_result in case_results.unexpectedSuccesses: result_list.append((case_result.test_full_name, 'UnexpectedSuccesses', '', case_result.start_time, case_result.stop_time, case_result.time_cost)) return result_list def run_command_with_popen(cmd): with subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, encoding='utf8') as sub_process: for line in iter(sub_process.stdout.readline, ''): sys.stdout.write(line) def async_run_command_with_popen(cmd, device_id): logger.info('Worker id: %s args: %s' % (device_id, cmd)) env = os.environ.copy() env['CUDA_VISIBLE_DEVICES'] = '%s' % device_id sub_process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True, env=env, encoding='utf8') return sub_process def save_test_result(df, args): if args.result_dir is not None: file_name = str(int(datetime.datetime.now().timestamp() * 1000)) os.umask(0) Path(args.result_dir).mkdir(mode=0o777, parents=True, exist_ok=True) Path(os.path.join(args.result_dir, file_name)).touch( mode=0o666, exist_ok=True) df.to_pickle(os.path.join(args.result_dir, file_name)) def run_command(cmd): logger.info('Running command: %s' % ' '.join(cmd)) response = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) try: response.check_returncode() logger.info(response.stdout.decode('utf8')) except subprocess.CalledProcessError as error: logger.error( 'stdout: %s, stderr: %s' % (response.stdout.decode('utf8'), error.stderr.decode('utf8'))) def install_packages(pkgs): cmd = [sys.executable, '-m', 'pip', 'install'] for pkg in pkgs: cmd.append(pkg) run_command(cmd) def install_requirements(requirements): for req in requirements: cmd = [ sys.executable, '-m', 'pip', 'install', '-r', 'requirements/%s' % req, '-f', 'https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html' ] run_command(cmd) def wait_for_free_worker(workers): while True: for idx, worker in enumerate(workers): if worker is None: logger.info('return free worker: %s' % (idx)) return idx if worker.poll() is None: # running, get output for line in iter(worker.stdout.readline, ''): if line != '': sys.stdout.write(line) else: break else: # worker process completed. logger.info('Process end: %s' % (idx)) workers[idx] = None return idx time.sleep(0.001) def wait_for_workers(workers): while True: for idx, worker in enumerate(workers): if worker is None: continue # check worker is completed. if worker.poll() is None: for line in iter(worker.stdout.readline, ''): if line != '': sys.stdout.write(line) else: break else: logger.info('Process idx: %s end!' % (idx)) workers[idx] = None is_all_completed = True for idx, worker in enumerate(workers): if worker is not None: is_all_completed = False break if is_all_completed: logger.info('All sub porcess is completed!') break time.sleep(0.001) def parallel_run_case_in_env(env_name, env, test_suite_env_map, isolated_cases, result_dir, parallel): logger.info('Running case in env: %s' % env_name) # install requirements and deps # run_config['envs'][env] if 'requirements' in env: install_requirements(env['requirements']) if 'dependencies' in env: install_packages(env['dependencies']) # case worker processes worker_processes = [None] * parallel for test_suite_file in isolated_cases: # run case in subprocess if test_suite_file in test_suite_env_map and test_suite_env_map[ test_suite_file] == env_name: cmd = [ 'python', 'tests/run.py', '--pattern', test_suite_file, '--result_dir', result_dir, ] worker_idx = wait_for_free_worker(worker_processes) worker_process = async_run_command_with_popen(cmd, worker_idx) os.set_blocking(worker_process.stdout.fileno(), False) worker_processes[worker_idx] = worker_process else: pass # case not in run list. # run remain cases in a process. remain_suite_files = [] for k, v in test_suite_env_map.items(): if k not in isolated_cases and v == env_name: remain_suite_files.append(k) if len(remain_suite_files) == 0: return # roughly split case in parallel part_count = math.ceil(len(remain_suite_files) / parallel) suites_chunks = [ remain_suite_files[x:x + part_count] for x in range(0, len(remain_suite_files), part_count) ] for suites_chunk in suites_chunks: worker_idx = wait_for_free_worker(worker_processes) cmd = [ 'python', 'tests/run.py', '--result_dir', result_dir, '--suites' ] for suite in suites_chunk: cmd.append(suite) worker_process = async_run_command_with_popen(cmd, worker_idx) os.set_blocking(worker_process.stdout.fileno(), False) worker_processes[worker_idx] = worker_process wait_for_workers(worker_processes) def run_case_in_env(env_name, env, test_suite_env_map, isolated_cases, result_dir): # install requirements and deps # run_config['envs'][env] if 'requirements' in env: install_requirements(env['requirements']) if 'dependencies' in env: install_packages(env['dependencies']) for test_suite_file in isolated_cases: # run case in subprocess if test_suite_file in test_suite_env_map and test_suite_env_map[ test_suite_file] == env_name: cmd = [ 'python', 'tests/run.py', '--pattern', test_suite_file, '--result_dir', result_dir, ] run_command_with_popen(cmd) else: pass # case not in run list. # run remain cases in a process. remain_suite_files = [] for k, v in test_suite_env_map.items(): if k not in isolated_cases and v == env_name: remain_suite_files.append(k) if len(remain_suite_files) == 0: return cmd = ['python', 'tests/run.py', '--result_dir', result_dir, '--suites'] for suite in remain_suite_files: cmd.append(suite) run_command_with_popen(cmd) def run_in_subprocess(args): # only case args.isolated_cases run in subporcess, all other run in a subprocess test_suite_files = gather_test_suites_files( os.path.abspath(args.test_dir), args.pattern) run_config = None isolated_cases = [] test_suite_env_map = {} # put all the case in default env. for test_suite_file in test_suite_files: test_suite_env_map[test_suite_file] = 'default' if args.run_config is not None and Path(args.run_config).exists(): with open(args.run_config, encoding='utf-8') as f: run_config = yaml.load(f, Loader=yaml.FullLoader) if 'isolated' in run_config: isolated_cases = run_config['isolated'] if 'envs' in run_config: for env in run_config['envs']: if env != 'default': for test_suite in run_config['envs'][env]['tests']: if test_suite in test_suite_env_map: test_suite_env_map[test_suite] = env if args.subprocess: # run all case in subprocess isolated_cases = test_suite_files with tempfile.TemporaryDirectory() as temp_result_dir: for env in set(test_suite_env_map.values()): parallel_run_case_in_env(env, run_config['envs'][env], test_suite_env_map, isolated_cases, temp_result_dir, args.parallel) result_dfs = [] result_path = Path(temp_result_dir) for result in result_path.iterdir(): if Path.is_file(result): df = pandas.read_pickle(result) result_dfs.append(df) result_pd = pandas.concat( result_dfs) # merge result of every test suite. print_table_result(result_pd) print_abnormal_case_info(result_pd) statistics_test_result(result_pd) def get_object_full_name(obj): klass = obj.__class__ module = klass.__module__ if module == 'builtins': return klass.__qualname__ return module + '.' + klass.__qualname__ class TimeCostTextTestResult(TextTestResult): """Record test case time used!""" def __init__(self, stream, descriptions, verbosity): self.successes = [] return super(TimeCostTextTestResult, self).__init__(stream, descriptions, verbosity) def startTest(self, test): test.start_time = datetime.datetime.now() test.test_full_name = get_object_full_name( test) + '.' + test._testMethodName self.stream.writeln('Test case: %s start at: %s' % (test.test_full_name, test.start_time)) return super(TimeCostTextTestResult, self).startTest(test) def stopTest(self, test): TextTestResult.stopTest(self, test) test.stop_time = datetime.datetime.now() test.time_cost = (test.stop_time - test.start_time).total_seconds() self.stream.writeln( 'Test case: %s stop at: %s, cost time: %s(seconds)' % (test.test_full_name, test.stop_time, test.time_cost)) if torch.cuda.is_available( ) and test.time_cost > 5.0: # print nvidia-smi cmd = ['nvidia-smi'] run_command_with_popen(cmd) super(TimeCostTextTestResult, self).stopTest(test) def addSuccess(self, test): self.successes.append(test) super(TextTestResult, self).addSuccess(test) class TimeCostTextTestRunner(unittest.runner.TextTestRunner): resultclass = TimeCostTextTestResult def run(self, test): return super(TimeCostTextTestRunner, self).run(test) def _makeResult(self): result = super(TimeCostTextTestRunner, self)._makeResult() return result def gather_test_cases(test_dir, pattern, list_tests): case_list = [] for dirpath, dirnames, filenames in os.walk(test_dir): for file in filenames: if fnmatch(file, pattern): case_list.append(file) test_suite = unittest.TestSuite() for case in case_list: test_case = unittest.defaultTestLoader.discover( start_dir=test_dir, pattern=case) test_suite.addTest(test_case) if hasattr(test_case, '__iter__'): for subcase in test_case: if list_tests: print(subcase) else: if list_tests: print(test_case) return test_suite def print_abnormal_case_info(df): df = df.loc[(df['Result'] == 'Error') | (df['Result'] == 'Failures')] for _, row in df.iterrows(): print('Case %s run result: %s, msg:\n%s' % (row['Name'], row['Result'], row['Info'])) def print_table_result(df): df = df.loc[df['Result'] != 'Skipped'] df = df.drop('Info', axis=1) formatters = { 'Name': '{{:<{}s}}'.format(df['Name'].str.len().max()).format, 'Result': '{{:<{}s}}'.format(df['Result'].str.len().max()).format, } with pandas.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None): print(df.to_string(justify='left', formatters=formatters, index=False)) def main(args): runner = TimeCostTextTestRunner() if args.suites is not None and len(args.suites) > 0: logger.info('Running: %s' % ' '.join(args.suites)) test_suite = gather_test_suites_in_files(args.test_dir, args.suites, args.list_tests) else: test_suite = gather_test_cases( os.path.abspath(args.test_dir), args.pattern, args.list_tests) if not args.list_tests: result = runner.run(test_suite) logger.info('Running case completed, pid: %s, suites: %s' % (os.getpid(), args.suites)) result = collect_test_results(result) df = test_cases_result_to_df(result) if args.result_dir is not None: save_test_result(df, args) else: print_table_result(df) print_abnormal_case_info(df) statistics_test_result(df) if __name__ == '__main__': parser = argparse.ArgumentParser('test runner') parser.add_argument( '--list_tests', action='store_true', help='list all tests') parser.add_argument( '--pattern', default='test_*.py', help='test file pattern') parser.add_argument( '--test_dir', default='tests', help='directory to be tested') parser.add_argument( '--level', default=0, type=int, help='2 -- all, 1 -- p1, 0 -- p0') parser.add_argument( '--disable_profile', action='store_true', help='disable profiling') parser.add_argument( '--run_config', default=None, help='specified case run config file(yaml file)') parser.add_argument( '--subprocess', action='store_true', help='run all test suite in subprocess') parser.add_argument( '--result_dir', default=None, help='Save result to directory, internal use only') parser.add_argument( '--parallel', default=1, type=int, help='Set case parallels, default single process, set with gpu number.' ) parser.add_argument( '--suites', nargs='*', help='Run specified test suites(test suite files list split by space)') args = parser.parse_args() set_test_level(args.level) os.environ['REGRESSION_BASELINE'] = '1' logger.info(f'TEST LEVEL: {test_level()}') if not args.disable_profile: from utils import profiler logger.info('enable profile ...') profiler.enable() if args.run_config is not None or args.subprocess: run_in_subprocess(args) else: main(args)