# Copyright (c) Alibaba, Inc. and its affiliates. import unittest import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from modelscope.models.base import TorchModel class TorchBaseTest(unittest.TestCase): def test_custom_model(self): class MyTorchModel(TorchModel): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) model = MyTorchModel() model.train() model.eval() out = model.forward(torch.rand(1, 1, 10, 10)) self.assertEqual((1, 20, 2, 2), out.shape) def test_custom_model_with_postprocess(self): add_bias = 200 class MyTorchModel(TorchModel): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) def postprocess(self, x): return x + add_bias model = MyTorchModel() model.train() model.eval() out = model(torch.rand(1, 1, 10, 10)) self.assertEqual((1, 20, 2, 2), out.shape) self.assertTrue(np.all(out.detach().numpy() > (add_bias - 10))) if __name__ == '__main__': unittest.main()