# Copyright (c) Alibaba, Inc. and its affiliates. import unittest from modelscope.models import Model from modelscope.msdatasets import MsDataset from modelscope.pipelines import pipeline from modelscope.pipelines.nlp import SequenceClassificationPipeline from modelscope.preprocessors import SequenceClassificationPreprocessor from modelscope.utils.constant import Hubs, Tasks from modelscope.utils.test_utils import test_level class SequenceClassificationTest(unittest.TestCase): def setUp(self) -> None: self.model_id = 'damo/bert-base-sst2' def predict(self, pipeline_ins: SequenceClassificationPipeline): from easynlp.appzoo import load_dataset set = load_dataset('glue', 'sst2') data = set['test']['sentence'][:3] results = pipeline_ins(data[0]) print(results) results = pipeline_ins(data[1]) print(results) print(data) def printDataset(self, dataset: MsDataset): for i, r in enumerate(dataset): if i > 10: break print(r) # @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') @unittest.skip('nlp model does not support tensor input, skipped') def test_run_with_model_from_modelhub(self): model = Model.from_pretrained(self.model_id) preprocessor = SequenceClassificationPreprocessor( model.model_dir, first_sequence='sentence', second_sequence=None) pipeline_ins = pipeline( task=Tasks.text_classification, model=model, preprocessor=preprocessor) self.predict(pipeline_ins) # @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') @unittest.skip('nlp model does not support tensor input, skipped') def test_run_with_model_name(self): text_classification = pipeline( task=Tasks.text_classification, model=self.model_id) result = text_classification( MsDataset.load( 'xcopa', subset_name='translation-et', namespace='damotest', split='test', target='premise')) self.printDataset(result) # @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') @unittest.skip('nlp model does not support tensor input, skipped') def test_run_with_default_model(self): text_classification = pipeline(task=Tasks.text_classification) result = text_classification( MsDataset.load( 'xcopa', subset_name='translation-et', namespace='damotest', split='test', target='premise')) self.printDataset(result) # @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') @unittest.skip('nlp model does not support tensor input, skipped') def test_run_with_modelscope_dataset(self): text_classification = pipeline(task=Tasks.text_classification) # loaded from modelscope dataset dataset = MsDataset.load( 'xcopa', subset_name='translation-et', namespace='damotest', split='test', target='premise') result = text_classification(dataset) self.printDataset(result) if __name__ == '__main__': unittest.main()