# Copyright (c) Alibaba, Inc. and its affiliates. import os import unittest from modelscope.hub.snapshot_download import snapshot_download from modelscope.models import Model from modelscope.models.cv.image_instance_segmentation.model import \ CascadeMaskRCNNSwinModel from modelscope.outputs import OutputKeys from modelscope.pipelines import ImageInstanceSegmentationPipeline, pipeline from modelscope.preprocessors import build_preprocessor from modelscope.utils.config import Config from modelscope.utils.constant import Fields, ModelFile, Tasks from modelscope.utils.test_utils import test_level class ImageInstanceSegmentationTest(unittest.TestCase): model_id = 'damo/cv_swin-b_image-instance-segmentation_coco' image = 'data/test/images/image_instance_segmentation.jpg' @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_model_from_modelhub(self): model = Model.from_pretrained(self.model_id) config_path = os.path.join(model.model_dir, ModelFile.CONFIGURATION) cfg = Config.from_file(config_path) preprocessor = build_preprocessor(cfg.preprocessor, Fields.cv) pipeline_ins = pipeline( task=Tasks.image_segmentation, model=model, preprocessor=preprocessor) print(pipeline_ins(input=self.image)[OutputKeys.LABELS]) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_model_name(self): pipeline_ins = pipeline( task=Tasks.image_segmentation, model=self.model_id) print(pipeline_ins(input=self.image)[OutputKeys.LABELS]) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_default_model(self): pipeline_ins = pipeline(task=Tasks.image_segmentation) print(pipeline_ins(input=self.image)[OutputKeys.LABELS]) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_by_direct_model_download(self): cache_path = snapshot_download(self.model_id) config_path = os.path.join(cache_path, ModelFile.CONFIGURATION) cfg = Config.from_file(config_path) preprocessor = build_preprocessor(cfg.preprocessor, Fields.cv) model = CascadeMaskRCNNSwinModel(cache_path) pipeline1 = ImageInstanceSegmentationPipeline( model, preprocessor=preprocessor) pipeline2 = pipeline( Tasks.image_segmentation, model=model, preprocessor=preprocessor) print(f'pipeline1:{pipeline1(input=self.image)[OutputKeys.LABELS]}') print(f'pipeline2: {pipeline2(input=self.image)[OutputKeys.LABELS]}') if __name__ == '__main__': unittest.main()