# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest import json import numpy as np import torch from torch import nn from modelscope.metainfo import Trainers from modelscope.metrics.builder import METRICS, MetricKeys from modelscope.models.base import Model from modelscope.trainers import build_trainer from modelscope.utils.constant import ModelFile from modelscope.utils.registry import default_group from modelscope.utils.test_utils import create_dummy_test_dataset def create_dummy_metric(): @METRICS.register_module( group_key=default_group, module_name='DummyMetric', force=True) class DummyMetric: def add(*args, **kwargs): pass def evaluate(self): return {MetricKeys.ACCURACY: 0.5} dummy_dataset = create_dummy_test_dataset( np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20) class DummyModel(nn.Module, Model): def __init__(self): super().__init__() self.linear = nn.Linear(5, 4) self.bn = nn.BatchNorm1d(4) def forward(self, feat, labels): x = self.linear(feat) x = self.bn(x) loss = torch.sum(x) return dict(logits=x, loss=loss) class EvaluationHookTest(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) create_dummy_metric() def tearDown(self): super().tearDown() shutil.rmtree(self.tmp_dir) def test_evaluation_hook(self): json_cfg = { 'task': 'image_classification', 'train': { 'work_dir': self.tmp_dir, 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1 }, 'optimizer': { 'type': 'SGD', 'lr': 0.01, }, 'lr_scheduler': { 'type': 'StepLR', 'step_size': 2, }, 'hooks': [{ 'type': 'EvaluationHook', 'interval': 1, }] }, 'evaluation': { 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1, 'shuffle': False }, 'metrics': ['DummyMetric'] } } config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) with open(config_path, 'w') as f: json.dump(json_cfg, f) trainer_name = Trainers.default kwargs = dict( cfg_file=config_path, model=DummyModel(), data_collator=None, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, max_epochs=1) trainer = build_trainer(trainer_name, kwargs) trainer.train() self.assertDictEqual(trainer.metric_values, {'accuracy': 0.5}) if __name__ == '__main__': unittest.main()