# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest from modelscope.metainfo import Preprocessors, Trainers from modelscope.models import Model from modelscope.msdatasets import MsDataset from modelscope.pipelines import pipeline from modelscope.trainers import NlpTrainerArguments, build_trainer from modelscope.trainers.hooks import Hook from modelscope.trainers.nlp_trainer import (EpochBasedTrainer, NlpEpochBasedTrainer) from modelscope.trainers.optimizer.child_tuning_adamw_optimizer import \ calculate_fisher from modelscope.utils.constant import ModelFile, Tasks from modelscope.utils.data_utils import to_device from modelscope.utils.regress_test_utils import (MsRegressTool, compare_arguments_nested) from modelscope.utils.test_utils import test_level class TestFinetuneSequenceClassification(unittest.TestCase): epoch_num = 1 sentence1 = '今天气温比昨天高么?' sentence2 = '今天湿度比昨天高么?' def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) self.regress_tool = MsRegressTool(baseline=False) def tearDown(self): shutil.rmtree(self.tmp_dir) super().tearDown() @unittest.skip def test_trainer_cfg_class(self): dataset = MsDataset.load('clue', subset_name='tnews') train_dataset = dataset['train'] validation_dataset = dataset['validation'] cfg_modify_fn = NlpTrainerArguments( task=Tasks.text_classification, preprocessor_type=Preprocessors.sen_cls_tokenizer, train_first_sequence='sentence', train_label='label', labels=[ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14' ], max_epochs=5, optimizer_args={ 'lr': 3e-5, }, lr_scheduler_args={ 'total_iters': int(len(train_dataset) / 32) * 5, }, checkpoint_saving_type='BestCkptSaverHook', metric_key='accuracy', train_batch_size_per_gpu=32, checkpoint_interval=1, train_workers_per_gpu=0, checkpoint_by_epoch=False, evaluation_interval=1, evaluation_by_epoch=False, eval_workers_per_gpu=0, metrics=['seq-cls-metric'], ) kwargs = dict( model='damo/nlp_structbert_backbone_base_std', train_dataset=train_dataset, eval_dataset=validation_dataset, work_dir=self.tmp_dir, seed=42, cfg_modify_fn=cfg_modify_fn) os.environ['LOCAL_RANK'] = '0' trainer: EpochBasedTrainer = build_trainer( name=Trainers.nlp_base_trainer, default_args=kwargs) trainer.train() @unittest.skip( 'Skip testing trainer repeatable, because it\'s unstable in daily UT') def test_trainer_repeatable(self): import torch # noqa def compare_fn(value1, value2, key, type): # Ignore the differences between optimizers of two torch versions if type != 'optimizer': return None match = (value1['type'] == value2['type']) shared_defaults = set(value1['defaults'].keys()).intersection( set(value2['defaults'].keys())) match = all([ compare_arguments_nested(f'Optimizer defaults {key} not match', value1['defaults'][key], value2['defaults'][key]) for key in shared_defaults ]) and match match = (len(value1['state_dict']['param_groups']) == len( value2['state_dict']['param_groups'])) and match for group1, group2 in zip(value1['state_dict']['param_groups'], value2['state_dict']['param_groups']): shared_keys = set(group1.keys()).intersection( set(group2.keys())) match = all([ compare_arguments_nested( f'Optimizer param_groups {key} not match', group1[key], group2[key]) for key in shared_keys ]) and match return match def cfg_modify_fn(cfg): cfg.task = 'nli' cfg['preprocessor'] = {'type': 'nli-tokenizer'} cfg.train.optimizer.lr = 2e-5 cfg['dataset'] = { 'train': { 'labels': [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14' ], 'first_sequence': 'sentence', 'label': 'label', } } cfg.train.max_epochs = 5 cfg.train.lr_scheduler = { 'type': 'LinearLR', 'start_factor': 1.0, 'end_factor': 0.0, 'total_iters': int(len(dataset['train']) / 32) * cfg.train.max_epochs, 'options': { 'by_epoch': False } } cfg.train.hooks = [{ 'type': 'CheckpointHook', 'interval': 1 }, { 'type': 'TextLoggerHook', 'interval': 1 }, { 'type': 'IterTimerHook' }, { 'type': 'EvaluationHook', 'by_epoch': False, 'interval': 100 }] return cfg dataset = MsDataset.load('clue', subset_name='tnews') kwargs = dict( model='damo/nlp_structbert_backbone_base_std', train_dataset=dataset['train'], eval_dataset=dataset['validation'], work_dir=self.tmp_dir, seed=42, cfg_modify_fn=cfg_modify_fn) os.environ['LOCAL_RANK'] = '0' trainer: EpochBasedTrainer = build_trainer( name=Trainers.nlp_base_trainer, default_args=kwargs) with self.regress_tool.monitor_ms_train( trainer, 'sbert-base-tnews', level='strict', compare_fn=compare_fn): trainer.train() def finetune(self, model_id, train_dataset, eval_dataset, name=Trainers.nlp_base_trainer, cfg_modify_fn=None, **kwargs): kwargs = dict( model=model_id, train_dataset=train_dataset, eval_dataset=eval_dataset, work_dir=self.tmp_dir, cfg_modify_fn=cfg_modify_fn, **kwargs) os.environ['LOCAL_RANK'] = '0' trainer = build_trainer(name=name, default_args=kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) for i in range(self.epoch_num): self.assertIn(f'epoch_{i + 1}.pth', results_files) output_files = os.listdir( os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)) self.assertIn(ModelFile.CONFIGURATION, output_files) self.assertIn(ModelFile.TORCH_MODEL_BIN_FILE, output_files) copy_src_files = os.listdir(trainer.model_dir) print(f'copy_src_files are {copy_src_files}') print(f'output_files are {output_files}') for item in copy_src_files: if not item.startswith('.'): self.assertIn(item, output_files) def pipeline_sentence_similarity(self, model_dir): model = Model.from_pretrained(model_dir) pipeline_ins = pipeline(task=Tasks.sentence_similarity, model=model) print(pipeline_ins(input=(self.sentence1, self.sentence2))) @unittest.skip def test_finetune_afqmc(self): """This unittest is used to reproduce the clue:afqmc dataset + structbert model training results. User can train a custom dataset by modifying this piece of code and comment the @unittest.skip. """ def cfg_modify_fn(cfg): cfg.task = Tasks.sentence_similarity cfg['preprocessor'] = {'type': Preprocessors.sen_sim_tokenizer} cfg.train.optimizer.lr = 2e-5 cfg['dataset'] = { 'train': { 'labels': ['0', '1'], 'first_sequence': 'sentence1', 'second_sequence': 'sentence2', 'label': 'label', } } cfg.train.max_epochs = self.epoch_num cfg.train.lr_scheduler = { 'type': 'LinearLR', 'start_factor': 1.0, 'end_factor': 0.0, 'total_iters': int(len(dataset['train']) / 32) * cfg.train.max_epochs, 'options': { 'by_epoch': False } } cfg.train.hooks = [{ 'type': 'CheckpointHook', 'interval': 1 }, { 'type': 'TextLoggerHook', 'interval': 1 }, { 'type': 'IterTimerHook' }, { 'type': 'EvaluationHook', 'by_epoch': False, 'interval': 100 }] return cfg dataset = MsDataset.load('clue', subset_name='afqmc') self.finetune( model_id='damo/nlp_structbert_backbone_base_std', train_dataset=dataset['train'], eval_dataset=dataset['validation'], cfg_modify_fn=cfg_modify_fn) output_dir = os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR) self.pipeline_sentence_similarity(output_dir) @unittest.skip def test_finetune_tnews(self): """This unittest is used to reproduce the clue:tnews dataset + structbert model training results. User can train a custom dataset by modifying this piece of code and comment the @unittest.skip. """ def cfg_modify_fn(cfg): # TODO no proper task for tnews cfg.task = 'nli' cfg['preprocessor'] = {'type': 'nli-tokenizer'} cfg.train.optimizer.lr = 2e-5 cfg['dataset'] = { 'train': { 'labels': [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14' ], 'first_sequence': 'sentence', 'label': 'label', } } cfg.train.max_epochs = 5 cfg.train.lr_scheduler = { 'type': 'LinearLR', 'start_factor': 1.0, 'end_factor': 0.0, 'total_iters': int(len(dataset['train']) / 32) * cfg.train.max_epochs, 'options': { 'by_epoch': False } } cfg.train.hooks = [{ 'type': 'CheckpointHook', 'interval': 1 }, { 'type': 'TextLoggerHook', 'interval': 1 }, { 'type': 'IterTimerHook' }, { 'type': 'EvaluationHook', 'by_epoch': False, 'interval': 100 }] return cfg dataset = MsDataset.load('clue', subset_name='tnews') self.finetune( model_id='damo/nlp_structbert_backbone_base_std', train_dataset=dataset['train'], eval_dataset=dataset['validation'], cfg_modify_fn=cfg_modify_fn) @unittest.skip def test_veco_xnli(self): """This unittest is used to reproduce the xnli dataset + veco model training results. Here we follow the training scenario listed in the Alicemind open source project: https://github.com/alibaba/AliceMind/tree/main/VECO by training the english language subset. User can train a custom dataset by modifying this piece of code and comment the @unittest.skip. """ from datasets import load_dataset langs = ['en'] langs_eval = ['en'] train_datasets = [] from datasets import DownloadConfig dc = DownloadConfig() dc.local_files_only = False for lang in langs: train_datasets.append( load_dataset('xnli', lang, split='train', download_config=dc)) eval_datasets = [] for lang in langs_eval: eval_datasets.append( load_dataset( 'xnli', lang, split='validation', download_config=dc)) train_len = sum([len(dataset) for dataset in train_datasets]) labels = ['0', '1', '2'] def cfg_modify_fn(cfg): cfg.task = 'nli' cfg['preprocessor'] = {'type': 'nli-tokenizer'} cfg['dataset'] = { 'train': { 'first_sequence': 'premise', 'second_sequence': 'hypothesis', 'labels': labels, 'label': 'label', } } cfg['train'] = { 'work_dir': '/tmp', 'max_epochs': 2, 'dataloader': { 'batch_size_per_gpu': 16, 'workers_per_gpu': 0 }, 'optimizer': { 'type': 'AdamW', 'lr': 2e-5, 'options': { 'cumulative_iters': 8, } }, 'lr_scheduler': { 'type': 'LinearLR', 'start_factor': 1.0, 'end_factor': 0.0, 'total_iters': int(train_len / 16) * 2, 'options': { 'by_epoch': False } }, 'hooks': [{ 'type': 'CheckpointHook', 'interval': 1, }, { 'type': 'TextLoggerHook', 'interval': 1 }, { 'type': 'IterTimerHook' }, { 'type': 'EvaluationHook', 'by_epoch': False, 'interval': 500 }] } cfg['evaluation'] = { 'dataloader': { 'batch_size_per_gpu': 128, 'workers_per_gpu': 0, 'shuffle': False } } return cfg self.finetune( 'damo/nlp_veco_fill-mask-large', train_datasets, eval_datasets, name=Trainers.nlp_veco_trainer, cfg_modify_fn=cfg_modify_fn) @unittest.skip def test_finetune_cluewsc(self): """This unittest is used to reproduce the clue:wsc dataset + structbert model training results. A runnable sample of child-tuning is also showed here. User can train a custom dataset by modifying this piece of code and comment the @unittest.skip. """ child_tuning_type = 'ChildTuning-F' mode = {} if child_tuning_type is not None: mode = {'mode': child_tuning_type, 'reserve_p': 0.2} def cfg_modify_fn(cfg): cfg.task = 'nli' cfg['preprocessor'] = {'type': 'nli-tokenizer'} cfg['dataset'] = { 'train': { 'labels': ['0', '1'], 'first_sequence': 'text', 'second_sequence': 'text2', 'label': 'label', } } cfg.train.dataloader.batch_size_per_gpu = 16 cfg.train.max_epochs = 30 cfg.train.optimizer = { 'type': 'AdamW' if child_tuning_type is None else 'ChildTuningAdamW', 'lr': 1e-5, 'options': {}, **mode, } cfg.train.lr_scheduler = { 'type': 'LinearLR', 'start_factor': 1.0, 'end_factor': 0.0, 'total_iters': int( len(dataset['train']) / cfg.train.dataloader.batch_size_per_gpu) * cfg.train.max_epochs, 'options': { 'by_epoch': False } } cfg.train.hooks = [{ 'type': 'CheckpointHook', 'interval': 1 }, { 'type': 'TextLoggerHook', 'interval': 1 }, { 'type': 'IterTimerHook' }, { 'type': 'EvaluationHook', 'by_epoch': False, 'interval': 30 }] return cfg def add_sentence2(features): return { 'text2': features['target']['span2_text'] + '指代' + features['target']['span1_text'] } dataset = MsDataset.load('clue', subset_name='cluewsc2020') dataset = { k: v.to_hf_dataset().map(add_sentence2) for k, v in dataset.items() } kwargs = dict( model='damo/nlp_structbert_backbone_base_std', train_dataset=dataset['train'], eval_dataset=dataset['validation'], work_dir=self.tmp_dir, cfg_modify_fn=cfg_modify_fn) os.environ['LOCAL_RANK'] = '0' trainer: NlpEpochBasedTrainer = build_trainer( name=Trainers.nlp_base_trainer, default_args=kwargs) class CalculateFisherHook(Hook): @staticmethod def forward_step(model, inputs): inputs = to_device(inputs, trainer.device) trainer.train_step(model, inputs) return trainer.train_outputs['loss'] def before_run(self, trainer: NlpEpochBasedTrainer): v = calculate_fisher(trainer.model, trainer.train_dataloader, self.forward_step, 0.2) trainer.optimizer.set_gradient_mask(v) if child_tuning_type == 'ChildTuning-D': trainer.register_hook(CalculateFisherHook()) trainer.train() if __name__ == '__main__': unittest.main()