# Copyright (c) Alibaba, Inc. and its affiliates. import unittest from modelscope.hub.snapshot_download import snapshot_download from modelscope.models import Model from modelscope.models.nlp import SbertForSequenceClassification from modelscope.pipelines import pipeline from modelscope.pipelines.nlp import ZeroShotClassificationPipeline from modelscope.preprocessors import ZeroShotClassificationPreprocessor from modelscope.utils.constant import Tasks from modelscope.utils.demo_utils import DemoCompatibilityCheck from modelscope.utils.regress_test_utils import IgnoreKeyFn, MsRegressTool from modelscope.utils.test_utils import test_level class ZeroShotClassificationTest(unittest.TestCase, DemoCompatibilityCheck): def setUp(self) -> None: self.task = Tasks.zero_shot_classification self.model_id = 'damo/nlp_structbert_zero-shot-classification_chinese-base' sentence = '全新突破 解放军运20版空中加油机曝光' labels = ['文化', '体育', '娱乐', '财经', '家居', '汽车', '教育', '科技', '军事'] labels_str = '文化, 体育, 娱乐, 财经, 家居, 汽车, 教育, 科技, 军事' template = '这篇文章的标题是{}' regress_tool = MsRegressTool(baseline=False) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_direct_file_download(self): cache_path = snapshot_download(self.model_id) tokenizer = ZeroShotClassificationPreprocessor(cache_path) model = SbertForSequenceClassification.from_pretrained(cache_path) pipeline1 = ZeroShotClassificationPipeline( model, preprocessor=tokenizer) pipeline2 = pipeline( Tasks.zero_shot_classification, model=model, preprocessor=tokenizer) print( f'sentence: {self.sentence}\n' f'pipeline1:{pipeline1(input=self.sentence,candidate_labels=self.labels)}' ) print( f'sentence: {self.sentence}\n' f'pipeline2: {pipeline2(self.sentence,candidate_labels=self.labels_str,hypothesis_template=self.template)}' ) print( f'sentence: {self.sentence}\n' f'pipeline2: {pipeline2(self.sentence,candidate_labels=self.labels,hypothesis_template=self.template)}' ) @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') def test_run_with_model_from_modelhub(self): model = Model.from_pretrained(self.model_id) tokenizer = ZeroShotClassificationPreprocessor(model.model_dir) pipeline_ins = pipeline( task=Tasks.zero_shot_classification, model=model, preprocessor=tokenizer) print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_run_with_model_name(self): pipeline_ins = pipeline( task=Tasks.zero_shot_classification, model=self.model_id) with self.regress_tool.monitor_module_single_forward( pipeline_ins.model, 'sbert_zero_shot', compare_fn=IgnoreKeyFn('.*intermediate_act_fn')): print( pipeline_ins( input=self.sentence, candidate_labels=self.labels)) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_default_model(self): pipeline_ins = pipeline(task=Tasks.zero_shot_classification) print(pipeline_ins(input=self.sentence, candidate_labels=self.labels)) @unittest.skip('demo compatibility test is only enabled on a needed-basis') def test_demo_compatibility(self): self.compatibility_check() if __name__ == '__main__': unittest.main()