Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10037492master
@@ -72,6 +72,7 @@ class Models(object): | |||
gemm = 'gemm-generative-multi-modal' | |||
mplug = 'mplug' | |||
diffusion = 'diffusion-text-to-image-synthesis' | |||
multi_stage_diffusion = 'multi-stage-diffusion-text-to-image-synthesis' | |||
team = 'team-multi-modal-similarity' | |||
video_clip = 'video-clip-multi-modal-embedding' | |||
@@ -14,6 +14,8 @@ if TYPE_CHECKING: | |||
from .ofa_for_all_tasks import OfaForAllTasks | |||
from .ofa_for_text_to_image_synthesis_model import \ | |||
OfaForTextToImageSynthesis | |||
from .multi_stage_diffusion import \ | |||
MultiStageDiffusionForTextToImageSynthesis | |||
else: | |||
_import_structure = { | |||
@@ -25,7 +27,9 @@ else: | |||
'mplug_for_all_tasks': ['MPlugForAllTasks'], | |||
'ofa_for_all_tasks': ['OfaForAllTasks'], | |||
'ofa_for_text_to_image_synthesis_model': | |||
['OfaForTextToImageSynthesis'] | |||
['OfaForTextToImageSynthesis'], | |||
'multi_stage_diffusion': | |||
['MultiStageDiffusionForTextToImageSynthesis'] | |||
} | |||
import sys | |||
@@ -0,0 +1 @@ | |||
from .model import MultiStageDiffusionForTextToImageSynthesis |
@@ -0,0 +1,318 @@ | |||
# The implementation here is modified based on OpenAI CLIP, publicly available at https://github.com/openai/CLIP. | |||
import math | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
__all__ = ['CLIP'] | |||
def to_fp16(m): | |||
if isinstance(m, (nn.Linear, nn.Conv2d)): | |||
m.weight.data = m.weight.data.half() | |||
if m.bias is not None: | |||
m.bias.data = m.bias.data.half() | |||
elif hasattr(m, 'head'): | |||
p = getattr(m, 'head') | |||
p.data = p.data.half() | |||
class QuickGELU(nn.Module): | |||
def forward(self, x): | |||
return x * torch.sigmoid(1.702 * x) | |||
class LayerNorm(nn.LayerNorm): | |||
r"""Subclass of nn.LayerNorm to handle fp16. | |||
""" | |||
def forward(self, x): | |||
return super(LayerNorm, self).forward(x.float()).type_as(x) | |||
class SelfAttention(nn.Module): | |||
def __init__(self, dim, num_heads, attn_dropout=0.0, proj_dropout=0.0): | |||
assert dim % num_heads == 0 | |||
super(SelfAttention, self).__init__() | |||
self.dim = dim | |||
self.num_heads = num_heads | |||
self.head_dim = dim // num_heads | |||
self.scale = 1.0 / math.sqrt(self.head_dim) | |||
# layers | |||
self.to_qkv = nn.Linear(dim, dim * 3) | |||
self.attn_dropout = nn.Dropout(attn_dropout) | |||
self.proj = nn.Linear(dim, dim) | |||
self.proj_dropout = nn.Dropout(proj_dropout) | |||
def forward(self, x, mask=None): | |||
r"""x: [B, L, C]. | |||
mask: [*, L, L]. | |||
""" | |||
b, l, _, n = *x.size(), self.num_heads | |||
# compute query, key, and value | |||
q, k, v = self.to_qkv(x.transpose(0, 1)).chunk(3, dim=-1) | |||
q = q.reshape(l, b * n, -1).transpose(0, 1) | |||
k = k.reshape(l, b * n, -1).transpose(0, 1) | |||
v = v.reshape(l, b * n, -1).transpose(0, 1) | |||
# compute attention | |||
attn = self.scale * torch.bmm(q, k.transpose(1, 2)) | |||
if mask is not None: | |||
attn = attn.masked_fill(mask[:, :l, :l] == 0, float('-inf')) | |||
attn = F.softmax(attn.float(), dim=-1).type_as(attn) | |||
attn = self.attn_dropout(attn) | |||
# gather context | |||
x = torch.bmm(attn, v) | |||
x = x.view(b, n, l, -1).transpose(1, 2).reshape(b, l, -1) | |||
# output | |||
x = self.proj(x) | |||
x = self.proj_dropout(x) | |||
return x | |||
class AttentionBlock(nn.Module): | |||
def __init__(self, dim, num_heads, attn_dropout=0.0, proj_dropout=0.0): | |||
super(AttentionBlock, self).__init__() | |||
self.dim = dim | |||
self.num_heads = num_heads | |||
# layers | |||
self.norm1 = LayerNorm(dim) | |||
self.attn = SelfAttention(dim, num_heads, attn_dropout, proj_dropout) | |||
self.norm2 = LayerNorm(dim) | |||
self.mlp = nn.Sequential( | |||
nn.Linear(dim, dim * 4), QuickGELU(), nn.Linear(dim * 4, dim), | |||
nn.Dropout(proj_dropout)) | |||
def forward(self, x, mask=None): | |||
x = x + self.attn(self.norm1(x), mask) | |||
x = x + self.mlp(self.norm2(x)) | |||
return x | |||
class VisionTransformer(nn.Module): | |||
def __init__(self, | |||
image_size=224, | |||
patch_size=16, | |||
dim=768, | |||
out_dim=512, | |||
num_heads=12, | |||
num_layers=12, | |||
attn_dropout=0.0, | |||
proj_dropout=0.0, | |||
embedding_dropout=0.0): | |||
assert image_size % patch_size == 0 | |||
super(VisionTransformer, self).__init__() | |||
self.image_size = image_size | |||
self.patch_size = patch_size | |||
self.dim = dim | |||
self.out_dim = out_dim | |||
self.num_heads = num_heads | |||
self.num_layers = num_layers | |||
self.num_patches = (image_size // patch_size)**2 | |||
# embeddings | |||
gain = 1.0 / math.sqrt(dim) | |||
self.patch_embedding = nn.Conv2d( | |||
3, dim, kernel_size=patch_size, stride=patch_size, bias=False) | |||
self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) | |||
self.pos_embedding = nn.Parameter( | |||
gain * torch.randn(1, self.num_patches + 1, dim)) | |||
self.dropout = nn.Dropout(embedding_dropout) | |||
# transformer | |||
self.pre_norm = LayerNorm(dim) | |||
self.transformer = nn.Sequential(*[ | |||
AttentionBlock(dim, num_heads, attn_dropout, proj_dropout) | |||
for _ in range(num_layers) | |||
]) | |||
self.post_norm = LayerNorm(dim) | |||
# head | |||
self.head = nn.Parameter(gain * torch.randn(dim, out_dim)) | |||
def forward(self, x): | |||
b, dtype = x.size(0), self.head.dtype | |||
x = x.type(dtype) | |||
# patch-embedding | |||
x = self.patch_embedding(x).flatten(2).permute(0, 2, 1) # [b, n, c] | |||
x = torch.cat([self.cls_embedding.repeat(b, 1, 1).type(dtype), x], | |||
dim=1) | |||
x = self.dropout(x + self.pos_embedding.type(dtype)) | |||
x = self.pre_norm(x) | |||
# transformer | |||
x = self.transformer(x) | |||
# head | |||
x = self.post_norm(x) | |||
x = torch.mm(x[:, 0, :], self.head) | |||
return x | |||
def fp16(self): | |||
return self.apply(to_fp16) | |||
class TextTransformer(nn.Module): | |||
def __init__(self, | |||
vocab_size, | |||
text_len, | |||
dim=512, | |||
out_dim=512, | |||
num_heads=8, | |||
num_layers=12, | |||
attn_dropout=0.0, | |||
proj_dropout=0.0, | |||
embedding_dropout=0.0): | |||
super(TextTransformer, self).__init__() | |||
self.vocab_size = vocab_size | |||
self.text_len = text_len | |||
self.dim = dim | |||
self.out_dim = out_dim | |||
self.num_heads = num_heads | |||
self.num_layers = num_layers | |||
# embeddings | |||
self.token_embedding = nn.Embedding(vocab_size, dim) | |||
self.pos_embedding = nn.Parameter(0.01 * torch.randn(1, text_len, dim)) | |||
self.dropout = nn.Dropout(embedding_dropout) | |||
# transformer | |||
self.transformer = nn.ModuleList([ | |||
AttentionBlock(dim, num_heads, attn_dropout, proj_dropout) | |||
for _ in range(num_layers) | |||
]) | |||
self.norm = LayerNorm(dim) | |||
# head | |||
gain = 1.0 / math.sqrt(dim) | |||
self.head = nn.Parameter(gain * torch.randn(dim, out_dim)) | |||
# causal attention mask | |||
self.register_buffer('attn_mask', | |||
torch.tril(torch.ones(1, text_len, text_len))) | |||
def forward(self, x): | |||
eot, dtype = x.argmax(dim=-1), self.head.dtype | |||
# embeddings | |||
x = self.dropout( | |||
self.token_embedding(x).type(dtype) | |||
+ self.pos_embedding.type(dtype)) | |||
# transformer | |||
for block in self.transformer: | |||
x = block(x, self.attn_mask) | |||
# head | |||
x = self.norm(x) | |||
x = torch.mm(x[torch.arange(x.size(0)), eot], self.head) | |||
return x | |||
def fp16(self): | |||
return self.apply(to_fp16) | |||
class CLIP(nn.Module): | |||
def __init__(self, | |||
embed_dim=512, | |||
image_size=224, | |||
patch_size=16, | |||
vision_dim=768, | |||
vision_heads=12, | |||
vision_layers=12, | |||
vocab_size=49408, | |||
text_len=77, | |||
text_dim=512, | |||
text_heads=8, | |||
text_layers=12, | |||
attn_dropout=0.0, | |||
proj_dropout=0.0, | |||
embedding_dropout=0.0): | |||
super(CLIP, self).__init__() | |||
self.embed_dim = embed_dim | |||
self.image_size = image_size | |||
self.patch_size = patch_size | |||
self.vision_dim = vision_dim | |||
self.vision_heads = vision_heads | |||
self.vision_layers = vision_layers | |||
self.vocab_size = vocab_size | |||
self.text_len = text_len | |||
self.text_dim = text_dim | |||
self.text_heads = text_heads | |||
self.text_layers = text_layers | |||
# models | |||
self.visual = VisionTransformer( | |||
image_size=image_size, | |||
patch_size=patch_size, | |||
dim=vision_dim, | |||
out_dim=embed_dim, | |||
num_heads=vision_heads, | |||
num_layers=vision_layers, | |||
attn_dropout=attn_dropout, | |||
proj_dropout=proj_dropout, | |||
embedding_dropout=embedding_dropout) | |||
self.textual = TextTransformer( | |||
vocab_size=vocab_size, | |||
text_len=text_len, | |||
dim=text_dim, | |||
out_dim=embed_dim, | |||
num_heads=text_heads, | |||
num_layers=text_layers, | |||
attn_dropout=attn_dropout, | |||
proj_dropout=proj_dropout, | |||
embedding_dropout=embedding_dropout) | |||
self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) | |||
def forward(self, imgs, txt_tokens): | |||
r"""imgs: [B, C, H, W] of torch.float32. | |||
txt_tokens: [B, T] of torch.long. | |||
""" | |||
xi = self.visual(imgs) | |||
xt = self.textual(txt_tokens) | |||
# normalize features | |||
xi = F.normalize(xi, p=2, dim=1) | |||
xt = F.normalize(xt, p=2, dim=1) | |||
# logits | |||
scale = self.log_scale.exp() | |||
logits_i2t = scale * torch.mm(xi, xt.t()) | |||
logits_t2i = scale * torch.mm(xt, xi.t()) | |||
return logits_i2t, logits_t2i | |||
def init_weights(self): | |||
# embeddings | |||
nn.init.normal_(self.textual.token_embedding.weight, std=0.02) | |||
nn.init.normal_(self.visual.patch_embedding.weight, tsd=0.1) | |||
# attentions | |||
for modality in ['visual', 'textual']: | |||
dim = self.vision_dim if modality == 'visual' else 'textual' | |||
transformer = getattr(self, modality).transformer | |||
proj_gain = (1.0 / math.sqrt(dim)) * ( | |||
1.0 / math.sqrt(2 * transformer.num_layers)) | |||
attn_gain = 1.0 / math.sqrt(dim) | |||
mlp_gain = 1.0 / math.sqrt(2.0 * dim) | |||
for block in transformer.layers: | |||
nn.init.normal_(block.attn.to_qkv.weight, std=attn_gain) | |||
nn.init.normal_(block.attn.proj.weight, std=proj_gain) | |||
nn.init.normal_(block.mlp[0].weight, std=mlp_gain) | |||
nn.init.normal_(block.mlp[2].weight, std=proj_gain) | |||
def fp16(self): | |||
return self.apply(to_fp16) |
@@ -0,0 +1,322 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import math | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
__all__ = ['Decoder'] | |||
def sinusoidal_embedding(timesteps, dim): | |||
# check input | |||
half = dim // 2 | |||
timesteps = timesteps.float() | |||
# compute sinusoidal embedding | |||
sinusoid = torch.outer( | |||
timesteps, torch.pow(10000, | |||
-torch.arange(half).to(timesteps).div(half))) | |||
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |||
if dim % 2 != 0: | |||
x = torch.cat([x, torch.zeros_like(x[:, :1])], dim=1) | |||
return x | |||
class Resample(nn.Module): | |||
def __init__(self, in_dim, out_dim, scale_factor, use_conv=False): | |||
assert scale_factor in [0.5, 1.0, 2.0] | |||
super(Resample, self).__init__() | |||
self.in_dim = in_dim | |||
self.out_dim = out_dim | |||
self.scale_factor = scale_factor | |||
self.use_conv = use_conv | |||
# layers | |||
if scale_factor == 2.0: | |||
self.resample = nn.Sequential( | |||
nn.Upsample(scale_factor=scale_factor, mode='nearest'), | |||
nn.Conv2d(in_dim, out_dim, 3, padding=1) | |||
if use_conv else nn.Identity()) | |||
elif scale_factor == 0.5: | |||
self.resample = nn.Conv2d( | |||
in_dim, out_dim, 3, stride=2, | |||
padding=1) if use_conv else nn.AvgPool2d( | |||
kernel_size=2, stride=2) | |||
else: | |||
self.resample = nn.Identity() | |||
def forward(self, x): | |||
return self.resample(x) | |||
class ResidualBlock(nn.Module): | |||
def __init__(self, | |||
in_dim, | |||
embed_dim, | |||
out_dim, | |||
use_scale_shift_norm=True, | |||
scale_factor=1.0, | |||
dropout=0.0): | |||
super(ResidualBlock, self).__init__() | |||
self.in_dim = in_dim | |||
self.embed_dim = embed_dim | |||
self.out_dim = out_dim | |||
self.use_scale_shift_norm = use_scale_shift_norm | |||
self.scale_factor = scale_factor | |||
# layers | |||
self.layer1 = nn.Sequential( | |||
nn.GroupNorm(32, in_dim), nn.SiLU(), | |||
nn.Conv2d(in_dim, out_dim, 3, padding=1)) | |||
self.resample = Resample(in_dim, in_dim, scale_factor, use_conv=False) | |||
self.embedding = nn.Sequential( | |||
nn.SiLU(), | |||
nn.Linear(embed_dim, | |||
out_dim * 2 if use_scale_shift_norm else out_dim)) | |||
self.layer2 = nn.Sequential( | |||
nn.GroupNorm(32, out_dim), nn.SiLU(), nn.Dropout(dropout), | |||
nn.Conv2d(out_dim, out_dim, 3, padding=1)) | |||
self.shortcut = nn.Identity() if in_dim == out_dim else nn.Conv2d( | |||
in_dim, out_dim, 1) | |||
# zero out the last layer params | |||
nn.init.zeros_(self.layer2[-1].weight) | |||
def forward(self, x, e): | |||
identity = self.resample(x) | |||
x = self.layer1[-1](self.resample(self.layer1[:-1](x))) | |||
e = self.embedding(e).unsqueeze(-1).unsqueeze(-1).type(x.dtype) | |||
if self.use_scale_shift_norm: | |||
scale, shift = e.chunk(2, dim=1) | |||
x = self.layer2[0](x) * (1 + scale) + shift | |||
x = self.layer2[1:](x) | |||
else: | |||
x = x + e | |||
x = self.layer2(x) | |||
x = x + self.shortcut(identity) | |||
return x | |||
class AttentionBlock(nn.Module): | |||
def __init__(self, dim, context_dim=None, num_heads=None, head_dim=None): | |||
# consider head_dim first, then num_heads | |||
num_heads = dim // head_dim if head_dim else num_heads | |||
head_dim = dim // num_heads | |||
assert num_heads * head_dim == dim | |||
super(AttentionBlock, self).__init__() | |||
self.dim = dim | |||
self.context_dim = context_dim | |||
self.num_heads = num_heads | |||
self.head_dim = head_dim | |||
self.scale = math.pow(head_dim, -0.25) | |||
# layers | |||
self.norm = nn.GroupNorm(32, dim) | |||
self.to_qkv = nn.Conv2d(dim, dim * 3, 1) | |||
if context_dim is not None: | |||
self.context_kv = nn.Linear(context_dim, dim * 2) | |||
self.proj = nn.Conv2d(dim, dim, 1) | |||
# zero out the last layer params | |||
nn.init.zeros_(self.proj.weight) | |||
def forward(self, x, context=None): | |||
r"""x: [B, C, H, W]. | |||
context: [B, L, C] or None. | |||
""" | |||
identity = x | |||
b, c, h, w, n, d = *x.size(), self.num_heads, self.head_dim | |||
# compute query, key, value | |||
x = self.norm(x) | |||
q, k, v = self.to_qkv(x).view(b, n * 3, d, h * w).chunk(3, dim=1) | |||
if context is not None: | |||
ck, cv = self.context_kv(context).reshape(b, -1, n * 2, | |||
d).permute(0, 2, 3, | |||
1).chunk( | |||
2, dim=1) | |||
k = torch.cat([ck, k], dim=-1) | |||
v = torch.cat([cv, v], dim=-1) | |||
# compute attention | |||
attn = torch.matmul(q.transpose(-1, -2) * self.scale, k * self.scale) | |||
attn = F.softmax(attn, dim=-1) | |||
# gather context | |||
x = torch.matmul(v, attn.transpose(-1, -2)) | |||
x = x.reshape(b, c, h, w) | |||
# output | |||
x = self.proj(x) | |||
return x + identity | |||
class Decoder(nn.Module): | |||
def __init__(self, | |||
in_dim=3, | |||
dim=512, | |||
y_dim=512, | |||
context_dim=512, | |||
out_dim=6, | |||
dim_mult=[1, 2, 3, 4], | |||
num_heads=None, | |||
head_dim=64, | |||
num_res_blocks=3, | |||
attn_scales=[1 / 2, 1 / 4, 1 / 8], | |||
resblock_resample=True, | |||
use_scale_shift_norm=True, | |||
dropout=0.1): | |||
embed_dim = dim * 4 | |||
super(Decoder, self).__init__() | |||
self.in_dim = in_dim | |||
self.dim = dim | |||
self.y_dim = y_dim | |||
self.context_dim = context_dim | |||
self.embed_dim = embed_dim | |||
self.out_dim = out_dim | |||
self.dim_mult = dim_mult | |||
self.num_heads = num_heads | |||
self.head_dim = head_dim | |||
self.num_res_blocks = num_res_blocks | |||
self.attn_scales = attn_scales | |||
self.resblock_resample = resblock_resample | |||
self.use_scale_shift_norm = use_scale_shift_norm | |||
# params | |||
enc_dims = [dim * u for u in [1] + dim_mult] | |||
dec_dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |||
shortcut_dims = [] | |||
scale = 1.0 | |||
# embeddings | |||
self.time_embedding = nn.Sequential( | |||
nn.Linear(dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, embed_dim)) | |||
self.y_embedding = nn.Sequential( | |||
nn.Linear(y_dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, embed_dim)) | |||
self.context_embedding = nn.Sequential( | |||
nn.Linear(y_dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, context_dim * 4)) | |||
# encoder | |||
self.encoder = nn.ModuleList( | |||
[nn.Conv2d(self.in_dim, dim, 3, padding=1)]) | |||
shortcut_dims.append(dim) | |||
for i, (in_dim, | |||
out_dim) in enumerate(zip(enc_dims[:-1], enc_dims[1:])): | |||
for j in range(num_res_blocks): | |||
# residual (+attention) blocks | |||
block = nn.ModuleList([ | |||
ResidualBlock(in_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 1.0, dropout) | |||
]) | |||
if scale in attn_scales: | |||
block.append( | |||
AttentionBlock(out_dim, context_dim, num_heads, | |||
head_dim)) | |||
in_dim = out_dim | |||
self.encoder.append(block) | |||
shortcut_dims.append(out_dim) | |||
# downsample | |||
if i != len(dim_mult) - 1 and j == num_res_blocks - 1: | |||
if resblock_resample: | |||
downsample = ResidualBlock(out_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 0.5, | |||
dropout) | |||
else: | |||
downsample = Resample( | |||
out_dim, out_dim, 0.5, use_conv=True) | |||
shortcut_dims.append(out_dim) | |||
scale /= 2.0 | |||
self.encoder.append(downsample) | |||
# middle | |||
self.middle = nn.ModuleList([ | |||
ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, | |||
1.0, dropout), | |||
AttentionBlock(out_dim, context_dim, num_heads, head_dim), | |||
ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, | |||
1.0, dropout) | |||
]) | |||
# decoder | |||
self.decoder = nn.ModuleList() | |||
for i, (in_dim, | |||
out_dim) in enumerate(zip(dec_dims[:-1], dec_dims[1:])): | |||
for j in range(num_res_blocks + 1): | |||
# residual (+attention) blocks | |||
block = nn.ModuleList([ | |||
ResidualBlock(in_dim + shortcut_dims.pop(), embed_dim, | |||
out_dim, use_scale_shift_norm, 1.0, dropout) | |||
]) | |||
if scale in attn_scales: | |||
block.append( | |||
AttentionBlock(out_dim, context_dim, num_heads, | |||
head_dim)) | |||
in_dim = out_dim | |||
# upsample | |||
if i != len(dim_mult) - 1 and j == num_res_blocks: | |||
if resblock_resample: | |||
upsample = ResidualBlock(out_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 2.0, | |||
dropout) | |||
else: | |||
upsample = Resample( | |||
out_dim, out_dim, 2.0, use_conv=True) | |||
scale *= 2.0 | |||
block.append(upsample) | |||
self.decoder.append(block) | |||
# head | |||
self.head = nn.Sequential( | |||
nn.GroupNorm(32, out_dim), nn.SiLU(), | |||
nn.Conv2d(out_dim, self.out_dim, 3, padding=1)) | |||
# zero out the last layer params | |||
nn.init.zeros_(self.head[-1].weight) | |||
def forward(self, x, t, y): | |||
# embeddings | |||
e = self.time_embedding(sinusoidal_embedding( | |||
t, self.dim)) + self.y_embedding(y) | |||
context = self.context_embedding(y).view(-1, 4, self.context_dim) | |||
# encoder | |||
xs = [] | |||
for block in self.encoder: | |||
x = self._forward_single(block, x, e, context) | |||
xs.append(x) | |||
# middle | |||
for block in self.middle: | |||
x = self._forward_single(block, x, e, context) | |||
# decoder | |||
for block in self.decoder: | |||
x = torch.cat([x, xs.pop()], dim=1) | |||
x = self._forward_single(block, x, e, context) | |||
# head | |||
x = self.head(x) | |||
return x | |||
def _forward_single(self, module, x, e, context): | |||
if isinstance(module, ResidualBlock): | |||
x = module(x, e) | |||
elif isinstance(module, AttentionBlock): | |||
x = module(x, context) | |||
elif isinstance(module, nn.ModuleList): | |||
for block in module: | |||
x = self._forward_single(block, x, e, context) | |||
else: | |||
x = module(x) | |||
return x |
@@ -0,0 +1,641 @@ | |||
# The implementation here is modified based on latent diffusion, publicly available | |||
# at https://github.com/CompVis/latent-diffusion. | |||
import math | |||
import torch | |||
__all__ = ['GaussianDiffusion', 'beta_schedule'] | |||
def kl_divergence(mu1, logvar1, mu2, logvar2): | |||
u1 = -1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2) | |||
u2 = ((mu1 - mu2)**2) * torch.exp(-logvar2) | |||
return 0.5 * (u1 + u2) | |||
def standard_normal_cdf(x): | |||
r"""A fast approximation of the cumulative distribution function of the standard normal. | |||
""" | |||
return 0.5 * (1.0 + torch.tanh( | |||
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |||
def discretized_gaussian_log_likelihood(x0, mean, log_scale): | |||
assert x0.shape == mean.shape == log_scale.shape | |||
cx = x0 - mean | |||
inv_stdv = torch.exp(-log_scale) | |||
cdf_plus = standard_normal_cdf(inv_stdv * (cx + 1.0 / 255.0)) | |||
cdf_min = standard_normal_cdf(inv_stdv * (cx - 1.0 / 255.0)) | |||
log_cdf_plus = torch.log(cdf_plus.clamp(min=1e-12)) | |||
log_one_minus_cdf_min = torch.log((1.0 - cdf_min).clamp(min=1e-12)) | |||
cdf_delta = cdf_plus - cdf_min | |||
log_probs = torch.where( | |||
x0 < -0.999, log_cdf_plus, | |||
torch.where(x0 > 0.999, log_one_minus_cdf_min, | |||
torch.log(cdf_delta.clamp(min=1e-12)))) | |||
assert log_probs.shape == x0.shape | |||
return log_probs | |||
def _i(tensor, t, x): | |||
r"""Index tensor using t and format the output according to x. | |||
""" | |||
shape = (x.size(0), ) + (1, ) * (x.ndim - 1) | |||
return tensor[t].view(shape).to(x) | |||
def beta_schedule(schedule, | |||
num_timesteps=1000, | |||
init_beta=None, | |||
last_beta=None): | |||
if schedule == 'linear': | |||
scale = 1000.0 / num_timesteps | |||
init_beta = init_beta or scale * 0.0001 | |||
last_beta = last_beta or scale * 0.02 | |||
return torch.linspace( | |||
init_beta, last_beta, num_timesteps, dtype=torch.float64) | |||
elif schedule == 'quadratic': | |||
init_beta = init_beta or 0.0015 | |||
last_beta = last_beta or 0.0195 | |||
return torch.linspace( | |||
init_beta**0.5, last_beta**0.5, num_timesteps, | |||
dtype=torch.float64)**2 | |||
elif schedule == 'cosine': | |||
betas = [] | |||
for step in range(num_timesteps): | |||
t1 = step / num_timesteps | |||
t2 = (step + 1) / num_timesteps | |||
fn_t1 = math.cos((t1 + 0.008) / 1.008 * math.pi / 2)**2 | |||
fn_t2 = math.cos((t2 + 0.008) / 1.008 * math.pi / 2)**2 | |||
betas.append(min(1.0 - fn_t2 / fn_t1, 0.999)) | |||
return torch.tensor(betas, dtype=torch.float64) | |||
else: | |||
raise ValueError(f'Unsupported schedule: {schedule}') | |||
class GaussianDiffusion(object): | |||
def __init__(self, | |||
betas, | |||
mean_type='eps', | |||
var_type='learned_range', | |||
loss_type='mse', | |||
rescale_timesteps=False): | |||
# check input | |||
if not isinstance(betas, torch.DoubleTensor): | |||
betas = torch.tensor(betas, dtype=torch.float64) | |||
assert min(betas) > 0 and max(betas) <= 1 | |||
assert mean_type in ['x0', 'x_{t-1}', 'eps'] | |||
assert var_type in [ | |||
'learned', 'learned_range', 'fixed_large', 'fixed_small' | |||
] | |||
assert loss_type in [ | |||
'mse', 'rescaled_mse', 'kl', 'rescaled_kl', 'l1', 'rescaled_l1' | |||
] | |||
self.betas = betas | |||
self.num_timesteps = len(betas) | |||
self.mean_type = mean_type | |||
self.var_type = var_type | |||
self.loss_type = loss_type | |||
self.rescale_timesteps = rescale_timesteps | |||
# alphas | |||
alphas = 1 - self.betas | |||
self.alphas_cumprod = torch.cumprod(alphas, dim=0) | |||
self.alphas_cumprod_prev = torch.cat( | |||
[alphas.new_ones([1]), self.alphas_cumprod[:-1]]) | |||
self.alphas_cumprod_next = torch.cat( | |||
[self.alphas_cumprod[1:], | |||
alphas.new_zeros([1])]) | |||
# q(x_t | x_{t-1}) | |||
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod) | |||
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 | |||
- self.alphas_cumprod) | |||
self.log_one_minus_alphas_cumprod = torch.log(1.0 | |||
- self.alphas_cumprod) | |||
self.sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod) | |||
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.alphas_cumprod | |||
- 1) | |||
# q(x_{t-1} | x_t, x_0) | |||
self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / ( | |||
1.0 - self.alphas_cumprod) | |||
self.posterior_log_variance_clipped = torch.log( | |||
self.posterior_variance.clamp(1e-20)) | |||
self.posterior_mean_coef1 = betas * torch.sqrt( | |||
self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |||
self.posterior_mean_coef2 = ( | |||
1.0 - self.alphas_cumprod_prev) * torch.sqrt(alphas) / ( | |||
1.0 - self.alphas_cumprod) | |||
def q_sample(self, x0, t, noise=None): | |||
r"""Sample from q(x_t | x_0). | |||
""" | |||
noise = torch.randn_like(x0) if noise is None else noise | |||
u1 = _i(self.sqrt_alphas_cumprod, t, x0) * x0 | |||
u2 = _i(self.sqrt_one_minus_alphas_cumprod, t, x0) * noise | |||
return u1 + u2 | |||
def q_mean_variance(self, x0, t): | |||
r"""Distribution of q(x_t | x_0). | |||
""" | |||
mu = _i(self.sqrt_alphas_cumprod, t, x0) * x0 | |||
var = _i(1.0 - self.alphas_cumprod, t, x0) | |||
log_var = _i(self.log_one_minus_alphas_cumprod, t, x0) | |||
return mu, var, log_var | |||
def q_posterior_mean_variance(self, x0, xt, t): | |||
r"""Distribution of q(x_{t-1} | x_t, x_0). | |||
""" | |||
mu = _i(self.posterior_mean_coef1, t, xt) * x0 + _i( | |||
self.posterior_mean_coef2, t, xt) * xt | |||
var = _i(self.posterior_variance, t, xt) | |||
log_var = _i(self.posterior_log_variance_clipped, t, xt) | |||
return mu, var, log_var | |||
@torch.no_grad() | |||
def p_sample(self, | |||
xt, | |||
t, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
condition_fn=None, | |||
guide_scale=None): | |||
r"""Sample from p(x_{t-1} | x_t). | |||
- condition_fn: for classifier-based guidance (guided-diffusion). | |||
- guide_scale: for classifier-free guidance (glide/dalle-2). | |||
""" | |||
# predict distribution of p(x_{t-1} | x_t) | |||
mu, var, log_var, x0 = self.p_mean_variance(xt, t, model, model_kwargs, | |||
clamp, percentile, | |||
guide_scale) | |||
# random sample (with optional conditional function) | |||
noise = torch.randn_like(xt) | |||
shape = (-1, *((1, ) * (xt.ndim - 1))) | |||
mask = t.ne(0).float().view(shape) # no noise when t == 0 | |||
if condition_fn is not None: | |||
grad = condition_fn(xt, self._scale_timesteps(t), **model_kwargs) | |||
mu = mu.float() + var * grad.float() | |||
xt_1 = mu + mask * torch.exp(0.5 * log_var) * noise | |||
return xt_1, x0 | |||
@torch.no_grad() | |||
def p_sample_loop(self, | |||
noise, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
condition_fn=None, | |||
guide_scale=None): | |||
r"""Sample from p(x_{t-1} | x_t) p(x_{t-2} | x_{t-1}) ... p(x_0 | x_1). | |||
""" | |||
# prepare input | |||
b = noise.size(0) | |||
xt = noise | |||
# diffusion process | |||
for step in torch.arange(self.num_timesteps).flip(0): | |||
t = torch.full((b, ), step, dtype=torch.long, device=xt.device) | |||
xt, _ = self.p_sample(xt, t, model, model_kwargs, clamp, | |||
percentile, condition_fn, guide_scale) | |||
return xt | |||
def p_mean_variance(self, | |||
xt, | |||
t, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
guide_scale=None): | |||
r"""Distribution of p(x_{t-1} | x_t). | |||
""" | |||
# predict distribution | |||
if guide_scale is None: | |||
out = model(xt, self._scale_timesteps(t), **model_kwargs) | |||
else: | |||
# classifier-free guidance | |||
# (model_kwargs[0]: conditional kwargs; model_kwargs[1]: non-conditional kwargs) | |||
assert isinstance(model_kwargs, list) and len(model_kwargs) == 2 | |||
y_out = model(xt, self._scale_timesteps(t), **model_kwargs[0]) | |||
u_out = model(xt, self._scale_timesteps(t), **model_kwargs[1]) | |||
cond = self.var_type.startswith('fixed') | |||
dim = y_out.size(1) if cond else y_out.size(1) // 2 | |||
u1 = u_out[:, :dim] | |||
u2 = guide_scale * (y_out[:, :dim] - u_out[:, :dim]) | |||
out = torch.cat([u1 + u2, y_out[:, dim:]], dim=1) | |||
# compute variance | |||
if self.var_type == 'learned': | |||
out, log_var = out.chunk(2, dim=1) | |||
var = torch.exp(log_var) | |||
elif self.var_type == 'learned_range': | |||
out, fraction = out.chunk(2, dim=1) | |||
min_log_var = _i(self.posterior_log_variance_clipped, t, xt) | |||
max_log_var = _i(torch.log(self.betas), t, xt) | |||
fraction = (fraction + 1) / 2.0 | |||
log_var = fraction * max_log_var + (1 - fraction) * min_log_var | |||
var = torch.exp(log_var) | |||
elif self.var_type == 'fixed_large': | |||
var = _i( | |||
torch.cat([self.posterior_variance[1:2], self.betas[1:]]), t, | |||
xt) | |||
log_var = torch.log(var) | |||
elif self.var_type == 'fixed_small': | |||
var = _i(self.posterior_variance, t, xt) | |||
log_var = _i(self.posterior_log_variance_clipped, t, xt) | |||
# compute mean and x0 | |||
if self.mean_type == 'x_{t-1}': | |||
mu = out # x_{t-1} | |||
u1 = _i(1.0 / self.posterior_mean_coef1, t, xt) * mu | |||
u2 = _i(self.posterior_mean_coef2 / self.posterior_mean_coef1, t, | |||
xt) * xt | |||
x0 = u1 - u2 | |||
elif self.mean_type == 'x0': | |||
x0 = out | |||
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t) | |||
elif self.mean_type == 'eps': | |||
u1 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * out | |||
x0 = u1 - u2 | |||
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t) | |||
# restrict the range of x0 | |||
if percentile is not None: | |||
assert percentile > 0 and percentile <= 1 # e.g., 0.995 | |||
s = torch.quantile( | |||
x0.flatten(1).abs(), percentile, | |||
dim=1).clamp_(1.0).view(-1, 1, 1, 1) | |||
x0 = torch.min(s, torch.max(-s, x0)) / s | |||
elif clamp is not None: | |||
x0 = x0.clamp(-clamp, clamp) | |||
return mu, var, log_var, x0 | |||
@torch.no_grad() | |||
def ddim_sample(self, | |||
xt, | |||
t, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
condition_fn=None, | |||
guide_scale=None, | |||
ddim_timesteps=20, | |||
eta=0.0): | |||
r"""Sample from p(x_{t-1} | x_t) using DDIM. | |||
- condition_fn: for classifier-based guidance (guided-diffusion). | |||
- guide_scale: for classifier-free guidance (glide/dalle-2). | |||
""" | |||
stride = self.num_timesteps // ddim_timesteps | |||
# predict distribution of p(x_{t-1} | x_t) | |||
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, | |||
percentile, guide_scale) | |||
if condition_fn is not None: | |||
# x0 -> eps | |||
alpha = _i(self.alphas_cumprod, t, xt) | |||
u1 = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) | |||
eps = u1 / u2 | |||
eps = eps - (1 - alpha).sqrt() * condition_fn( | |||
xt, self._scale_timesteps(t), **model_kwargs) | |||
# eps -> x0 | |||
u1 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps | |||
x0 = u1 - u2 | |||
# derive variables | |||
u1 = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) | |||
eps = u1 / u2 | |||
alphas = _i(self.alphas_cumprod, t, xt) | |||
alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt) | |||
u1 = (1 - alphas_prev) / (1 - alphas) | |||
u2 = (1 - alphas / alphas_prev) | |||
sigmas = eta * torch.sqrt(u1 * u2) | |||
# random sample | |||
noise = torch.randn_like(xt) | |||
direction = torch.sqrt(1 - alphas_prev - sigmas**2) * eps | |||
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1))) | |||
xt_1 = torch.sqrt(alphas_prev) * x0 + direction + mask * sigmas * noise | |||
return xt_1, x0 | |||
@torch.no_grad() | |||
def ddim_sample_loop(self, | |||
noise, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
condition_fn=None, | |||
guide_scale=None, | |||
ddim_timesteps=20, | |||
eta=0.0): | |||
# prepare input | |||
b = noise.size(0) | |||
xt = noise | |||
# diffusion process (TODO: clamp is inaccurate! Consider replacing the stride by explicit prev/next steps) | |||
steps = (1 + torch.arange(0, self.num_timesteps, | |||
self.num_timesteps // ddim_timesteps)).clamp( | |||
0, self.num_timesteps - 1).flip(0) | |||
for step in steps: | |||
t = torch.full((b, ), step, dtype=torch.long, device=xt.device) | |||
xt, _ = self.ddim_sample(xt, t, model, model_kwargs, clamp, | |||
percentile, condition_fn, guide_scale, | |||
ddim_timesteps, eta) | |||
return xt | |||
@torch.no_grad() | |||
def ddim_reverse_sample(self, | |||
xt, | |||
t, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
guide_scale=None, | |||
ddim_timesteps=20): | |||
r"""Sample from p(x_{t+1} | x_t) using DDIM reverse ODE (deterministic). | |||
""" | |||
stride = self.num_timesteps // ddim_timesteps | |||
# predict distribution of p(x_{t-1} | x_t) | |||
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp, | |||
percentile, guide_scale) | |||
# derive variables | |||
u1 = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) | |||
eps = u1 / u2 | |||
alphas_next = _i( | |||
torch.cat( | |||
[self.alphas_cumprod, | |||
self.alphas_cumprod.new_zeros([1])]), | |||
(t + stride).clamp(0, self.num_timesteps), xt) | |||
# reverse sample | |||
mu = torch.sqrt(alphas_next) * x0 + torch.sqrt(1 - alphas_next) * eps | |||
return mu, x0 | |||
@torch.no_grad() | |||
def ddim_reverse_sample_loop(self, | |||
x0, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
guide_scale=None, | |||
ddim_timesteps=20): | |||
# prepare input | |||
b = x0.size(0) | |||
xt = x0 | |||
# reconstruction steps | |||
steps = torch.arange(0, self.num_timesteps, | |||
self.num_timesteps // ddim_timesteps) | |||
for step in steps: | |||
t = torch.full((b, ), step, dtype=torch.long, device=xt.device) | |||
xt, _ = self.ddim_reverse_sample(xt, t, model, model_kwargs, clamp, | |||
percentile, guide_scale, | |||
ddim_timesteps) | |||
return xt | |||
@torch.no_grad() | |||
def plms_sample(self, | |||
xt, | |||
t, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
condition_fn=None, | |||
guide_scale=None, | |||
plms_timesteps=20): | |||
r"""Sample from p(x_{t-1} | x_t) using PLMS. | |||
- condition_fn: for classifier-based guidance (guided-diffusion). | |||
- guide_scale: for classifier-free guidance (glide/dalle-2). | |||
""" | |||
stride = self.num_timesteps // plms_timesteps | |||
# function for compute eps | |||
def compute_eps(xt, t): | |||
# predict distribution of p(x_{t-1} | x_t) | |||
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, | |||
clamp, percentile, guide_scale) | |||
# condition | |||
if condition_fn is not None: | |||
# x0 -> eps | |||
alpha = _i(self.alphas_cumprod, t, xt) | |||
u1 = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) | |||
eps = u1 / u2 | |||
eps = eps - (1 - alpha).sqrt() * condition_fn( | |||
xt, self._scale_timesteps(t), **model_kwargs) | |||
# eps -> x0 | |||
u1 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps | |||
x0 = u1 - u2 | |||
# derive eps | |||
u1 = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) | |||
eps = u1 / u2 | |||
return eps | |||
# function for compute x_0 and x_{t-1} | |||
def compute_x0(eps, t): | |||
# eps -> x0 | |||
u1 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) * eps | |||
x0 = u1 - u2 | |||
# deterministic sample | |||
alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt) | |||
direction = torch.sqrt(1 - alphas_prev) * eps | |||
# mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1))) | |||
xt_1 = torch.sqrt(alphas_prev) * x0 + direction | |||
return xt_1, x0 | |||
# PLMS sample | |||
eps = compute_eps(xt, t) | |||
if len(eps_cache) == 0: | |||
# 2nd order pseudo improved Euler | |||
xt_1, x0 = compute_x0(eps, t) | |||
eps_next = compute_eps(xt_1, (t - stride).clamp(0)) | |||
eps_prime = (eps + eps_next) / 2.0 | |||
elif len(eps_cache) == 1: | |||
# 2nd order pseudo linear multistep (Adams-Bashforth) | |||
eps_prime = (3 * eps - eps_cache[-1]) / 2.0 | |||
elif len(eps_cache) == 2: | |||
# 3nd order pseudo linear multistep (Adams-Bashforth) | |||
eps_prime = (23 * eps - 16 * eps_cache[-1] | |||
+ 5 * eps_cache[-2]) / 12.0 | |||
elif len(eps_cache) >= 3: | |||
# 4nd order pseudo linear multistep (Adams-Bashforth) | |||
eps_prime = (55 * eps - 59 * eps_cache[-1] + 37 * eps_cache[-2] | |||
- 9 * eps_cache[-3]) / 24.0 | |||
xt_1, x0 = compute_x0(eps_prime, t) | |||
return xt_1, x0, eps | |||
@torch.no_grad() | |||
def plms_sample_loop(self, | |||
noise, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None, | |||
condition_fn=None, | |||
guide_scale=None, | |||
plms_timesteps=20): | |||
# prepare input | |||
b = noise.size(0) | |||
xt = noise | |||
# diffusion process | |||
steps = (1 + torch.arange(0, self.num_timesteps, | |||
self.num_timesteps // plms_timesteps)).clamp( | |||
0, self.num_timesteps - 1).flip(0) | |||
eps_cache = [] | |||
for step in steps: | |||
# PLMS sampling step | |||
t = torch.full((b, ), step, dtype=torch.long, device=xt.device) | |||
xt, _, eps = self.plms_sample(xt, t, model, model_kwargs, clamp, | |||
percentile, condition_fn, | |||
guide_scale, plms_timesteps, | |||
eps_cache) | |||
# update eps cache | |||
eps_cache.append(eps) | |||
if len(eps_cache) >= 4: | |||
eps_cache.pop(0) | |||
return xt | |||
def loss(self, x0, t, model, model_kwargs={}, noise=None, input_x0=None): | |||
noise = torch.randn_like(x0) if noise is None else noise | |||
input_x0 = x0 if input_x0 is None else input_x0 | |||
xt = self.q_sample(input_x0, t, noise=noise) | |||
# compute loss | |||
if self.loss_type in ['kl', 'rescaled_kl']: | |||
loss, _ = self.variational_lower_bound(x0, xt, t, model, | |||
model_kwargs) | |||
if self.loss_type == 'rescaled_kl': | |||
loss = loss * self.num_timesteps | |||
elif self.loss_type in ['mse', 'rescaled_mse', 'l1', 'rescaled_l1']: | |||
out = model(xt, self._scale_timesteps(t), **model_kwargs) | |||
# VLB for variation | |||
loss_vlb = 0.0 | |||
if self.var_type in ['learned', 'learned_range']: | |||
out, var = out.chunk(2, dim=1) | |||
frozen = torch.cat([ | |||
out.detach(), var | |||
], dim=1) # learn var without affecting the prediction of mean | |||
loss_vlb, _ = self.variational_lower_bound( | |||
x0, xt, t, model=lambda *args, **kwargs: frozen) | |||
if self.loss_type.startswith('rescaled_'): | |||
loss_vlb = loss_vlb * self.num_timesteps / 1000.0 | |||
# MSE/L1 for x0/eps | |||
target = { | |||
'eps': noise, | |||
'x0': x0, | |||
'x_{t-1}': self.q_posterior_mean_variance(x0, xt, t)[0] | |||
}[self.mean_type] | |||
loss = (out - target).pow(1 if self.loss_type.endswith('l1') else 2 | |||
).abs().flatten(1).mean(dim=1) | |||
# total loss | |||
loss = loss + loss_vlb | |||
return loss | |||
def variational_lower_bound(self, | |||
x0, | |||
xt, | |||
t, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None): | |||
# compute groundtruth and predicted distributions | |||
mu1, _, log_var1 = self.q_posterior_mean_variance(x0, xt, t) | |||
mu2, _, log_var2, x0 = self.p_mean_variance(xt, t, model, model_kwargs, | |||
clamp, percentile) | |||
# compute KL loss | |||
kl = kl_divergence(mu1, log_var1, mu2, log_var2) | |||
kl = kl.flatten(1).mean(dim=1) / math.log(2.0) | |||
# compute discretized NLL loss (for p(x0 | x1) only) | |||
nll = -discretized_gaussian_log_likelihood( | |||
x0, mean=mu2, log_scale=0.5 * log_var2) | |||
nll = nll.flatten(1).mean(dim=1) / math.log(2.0) | |||
# NLL for p(x0 | x1) and KL otherwise | |||
vlb = torch.where(t == 0, nll, kl) | |||
return vlb, x0 | |||
@torch.no_grad() | |||
def variational_lower_bound_loop(self, | |||
x0, | |||
model, | |||
model_kwargs={}, | |||
clamp=None, | |||
percentile=None): | |||
r"""Compute the entire variational lower bound, measured in bits-per-dim. | |||
""" | |||
# prepare input and output | |||
b = x0.size(0) | |||
metrics = {'vlb': [], 'mse': [], 'x0_mse': []} | |||
# loop | |||
for step in torch.arange(self.num_timesteps).flip(0): | |||
# compute VLB | |||
t = torch.full((b, ), step, dtype=torch.long, device=x0.device) | |||
noise = torch.randn_like(x0) | |||
xt = self.q_sample(x0, t, noise) | |||
vlb, pred_x0 = self.variational_lower_bound( | |||
x0, xt, t, model, model_kwargs, clamp, percentile) | |||
# predict eps from x0 | |||
u1 = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) | |||
u2 = _i(self.sqrt_recipm1_alphas_cumprod, t, xt) | |||
eps = u1 / u2 | |||
# collect metrics | |||
metrics['vlb'].append(vlb) | |||
metrics['x0_mse'].append( | |||
(pred_x0 - x0).square().flatten(1).mean(dim=1)) | |||
metrics['mse'].append( | |||
(eps - noise).square().flatten(1).mean(dim=1)) | |||
metrics = {k: torch.stack(v, dim=1) for k, v in metrics.items()} | |||
# compute the prior KL term for VLB, measured in bits-per-dim | |||
mu, _, log_var = self.q_mean_variance(x0, t) | |||
kl_prior = kl_divergence(mu, log_var, torch.zeros_like(mu), | |||
torch.zeros_like(log_var)) | |||
kl_prior = kl_prior.flatten(1).mean(dim=1) / math.log(2.0) | |||
# update metrics | |||
metrics['prior_bits_per_dim'] = kl_prior | |||
metrics['total_bits_per_dim'] = metrics['vlb'].sum(dim=1) + kl_prior | |||
return metrics | |||
def _scale_timesteps(self, t): | |||
if self.rescale_timesteps: | |||
return t.float() * 1000.0 / self.num_timesteps | |||
return t |
@@ -0,0 +1,265 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import math | |||
import os.path as osp | |||
from typing import Any, Dict | |||
import json | |||
import numpy as np | |||
import torch | |||
import torch.cuda.amp as amp | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from PIL import Image | |||
from modelscope.metainfo import Models | |||
from modelscope.models import TorchModel | |||
from modelscope.models.builder import MODELS | |||
from modelscope.models.multi_modal.multi_stage_diffusion.clip import CLIP | |||
from modelscope.models.multi_modal.multi_stage_diffusion.decoder import Decoder | |||
from modelscope.models.multi_modal.multi_stage_diffusion.gaussian_diffusion import ( | |||
GaussianDiffusion, beta_schedule) | |||
from modelscope.models.multi_modal.multi_stage_diffusion.prior import Prior | |||
from modelscope.models.multi_modal.multi_stage_diffusion.tokenizer import ( | |||
CLIPTokenizer, XGLMTokenizer) | |||
from modelscope.models.multi_modal.multi_stage_diffusion.upsampler import ( | |||
Upsampler256, Upsampler1024) | |||
from modelscope.models.multi_modal.multi_stage_diffusion.xglm import XGLM | |||
from modelscope.utils.constant import ModelFile, Tasks | |||
from modelscope.utils.logger import get_logger | |||
logger = get_logger() | |||
__all__ = ['MultiStageDiffusionForTextToImageSynthesis'] | |||
def make_diffusion(schedule, | |||
num_timesteps=1000, | |||
init_beta=None, | |||
last_beta=None, | |||
mean_type='eps', | |||
var_type='fixed_small'): | |||
betas = beta_schedule(schedule, num_timesteps, init_beta, last_beta) | |||
diffusion = GaussianDiffusion( | |||
betas, mean_type=mean_type, var_type=var_type) | |||
return diffusion | |||
class UnCLIP(nn.Module): | |||
def __init__(self, model_dir): | |||
super(UnCLIP, self).__init__() | |||
self.model_dir = model_dir | |||
self.config = json.load(open(f'{model_dir}/{ModelFile.CONFIGURATION}')) | |||
# modules | |||
self.clip = CLIP(**self.config['clip']).fp16() | |||
self.xglm = XGLM(**self.config['xglm']) | |||
self.prior = Prior(**self.config['prior']) | |||
self.decoder = Decoder(**self.config['decoder']) | |||
self.upsampler256 = Upsampler256(**self.config['upsampler256']) | |||
self.upsampler1024 = Upsampler1024(**self.config['upsampler1024']) | |||
# diffusions | |||
self.prior_diffusion = make_diffusion(**self.config['prior_diffusion']) | |||
self.decoder_diffusion = make_diffusion( | |||
**self.config['decoder_diffusion']) | |||
self.upsampler256_diffusion = make_diffusion( | |||
**self.config['upsampler256_diffusion']) | |||
self.upsampler1024_diffusion = make_diffusion( | |||
**self.config['upsampler1024_diffusion']) | |||
# tokenizers | |||
self.clip_tokenizer = CLIPTokenizer( | |||
bpe_path=f'{model_dir}/bpe_simple_vocab_16e6.txt.gz') | |||
self.xglm_tokenizer = XGLMTokenizer(model_dir=model_dir) | |||
def forward(self, *args, **kwargs): | |||
raise NotImplementedError( | |||
'"forward" is not implemented. Use "synthesis" instead.') | |||
@torch.no_grad() | |||
def synthesis(self, | |||
text='A photo of a confused grizzly bear in calculus class.', | |||
tokenizer='clip', | |||
batch_size=4, | |||
timesteps_prior=100, | |||
timesteps_64=50, | |||
timesteps_256=20, | |||
timesteps_1024=20, | |||
guide_prior=3.0, | |||
guide_64=7.0, | |||
guide_256=3.0, | |||
guide_1024=3.0, | |||
eta_prior=0.0, | |||
eta_64=0.0, | |||
eta_256=0.0, | |||
eta_1024=0.0): | |||
device = next(self.parameters()).device | |||
# check params | |||
assert all([ | |||
t > 0 and t <= 1000 for t in | |||
[timesteps_prior, timesteps_64, timesteps_256, timesteps_1024] | |||
]) | |||
assert all([ | |||
g > 1 and g < 15 | |||
for g in [guide_prior, guide_64, guide_256, guide_1024] | |||
]) | |||
assert all([ | |||
e >= 0 and e <= 1.0 | |||
for e in [eta_prior, eta_64, eta_256, eta_1024] | |||
]) | |||
assert batch_size >= 1 and batch_size <= 16 | |||
# tokenize the text | |||
if tokenizer == 'clip': | |||
y = F.normalize( | |||
self.clip.textual(self.clip_tokenizer([text]).to(device)), | |||
p=2, | |||
dim=1) | |||
zero_y = F.normalize( | |||
self.clip.textual(self.clip_tokenizer(['']).to(device)), | |||
p=2, | |||
dim=1) | |||
elif tokenizer == 'xglm': | |||
y = F.normalize( | |||
self.xglm(*to_device(self.xglm_tokenizer([text]), device)), | |||
p=2, | |||
dim=1) | |||
zero_y = F.normalize( | |||
self.xglm(*to_device(self.xglm_tokenizer(['']), device)), | |||
p=2, | |||
dim=1) | |||
else: | |||
raise ValueError( | |||
f'Expected tokenizer to be one of "clip" or "xglm", but got {tokenizer}' | |||
) | |||
y = math.sqrt(y.size(1)) * y.repeat(batch_size, 1) | |||
zero_y = math.sqrt(zero_y.size(1)) * zero_y.repeat(batch_size, 1) | |||
# synthesis | |||
with amp.autocast(enabled=True): | |||
# prior | |||
x0 = self.prior_diffusion.ddim_sample_loop( | |||
noise=torch.randn_like(y), | |||
model=self.prior, | |||
model_kwargs=[{ | |||
'y': y | |||
}, { | |||
'y': zero_y | |||
}], | |||
guide_scale=guide_prior, | |||
ddim_timesteps=timesteps_prior, | |||
eta=eta_prior) | |||
# decoder | |||
imgs64 = self.decoder_diffusion.ddim_sample_loop( | |||
noise=torch.randn(batch_size, 3, 64, 64).to(device), | |||
model=self.decoder, | |||
model_kwargs=[{ | |||
'y': x0 | |||
}, { | |||
'y': torch.zeros_like(x0) | |||
}], | |||
guide_scale=guide_64, | |||
percentile=0.995, | |||
ddim_timesteps=timesteps_64, | |||
eta=eta_64).clamp_(-1, 1) | |||
# upsampler256 | |||
imgs256 = F.interpolate( | |||
imgs64, scale_factor=4.0, mode='bilinear', align_corners=False) | |||
imgs256 = self.upsampler256_diffusion.ddim_sample_loop( | |||
noise=torch.randn_like(imgs256), | |||
model=self.upsampler256, | |||
model_kwargs=[{ | |||
'y': y, | |||
'concat': imgs256 | |||
}, { | |||
'y': zero_y, | |||
'concat': imgs256 | |||
}], | |||
guide_scale=guide_256, | |||
percentile=0.995, | |||
ddim_timesteps=timesteps_256, | |||
eta=eta_256).clamp_(-1, 1) | |||
# upsampler1024 | |||
imgs1024 = F.interpolate( | |||
imgs256, | |||
scale_factor=4.0, | |||
mode='bilinear', | |||
align_corners=False) | |||
imgs1024 = self.upsampler1024_diffusion.ddim_sample_loop( | |||
noise=torch.randn_like(imgs1024), | |||
model=self.upsampler1024, | |||
model_kwargs=[{ | |||
'y': y, | |||
'concat': imgs1024 | |||
}, { | |||
'y': zero_y, | |||
'concat': imgs1024 | |||
}], | |||
guide_scale=guide_1024, | |||
percentile=0.995, | |||
ddim_timesteps=timesteps_1024, | |||
eta=eta_1024).clamp_(-1, 1) | |||
# output ([B, C, H, W] within range [0, 1]) | |||
imgs1024 = imgs1024.add_(1).mul_(255 / 2.0).permute(0, 2, 3, 1).cpu() | |||
imgs1024 = [ | |||
Image.fromarray(np.array(u, dtype=np.uint8)) for u in imgs1024 | |||
] | |||
return imgs1024 | |||
@MODELS.register_module( | |||
Tasks.text_to_image_synthesis, module_name=Models.multi_stage_diffusion) | |||
class MultiStageDiffusionForTextToImageSynthesis(TorchModel): | |||
def __init__(self, model_dir, device_id=-1): | |||
super().__init__(model_dir=model_dir, device_id=device_id) | |||
model = UnCLIP(model_dir=model_dir) | |||
pretrained_params = torch.load( | |||
osp.join(model_dir, ModelFile.TORCH_MODEL_BIN_FILE), 'cpu') | |||
model.load_state_dict(pretrained_params) | |||
model.eval() | |||
self.device_id = device_id | |||
if self.device_id >= 0: | |||
self.device = torch.device(f'cuda:{self.device_id}') | |||
model.to('cuda:{}'.format(self.device_id)) | |||
logger.info('Use GPU: {}'.format(self.device_id)) | |||
else: | |||
self.device = torch.device('cpu') | |||
logger.info('Use CPU for inference') | |||
self.model = model | |||
def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||
if not isinstance(input, dict): | |||
raise ValueError( | |||
f'Expected the input to be a dictionary, but got {type(input)}' | |||
) | |||
if 'text' not in input: | |||
raise ValueError('input should contain "text", but not found') | |||
# ddim sampling | |||
imgs = self.model.synthesis( | |||
text=input.get('text'), | |||
tokenizer=input.get('tokenizer', 'clip'), | |||
batch_size=input.get('batch_size', 4), | |||
timesteps_prior=input.get('timesteps_prior', 100), | |||
timesteps_64=input.get('timesteps_64', 50), | |||
timesteps_256=input.get('timesteps_256', 20), | |||
timesteps_1024=input.get('timesteps_1024', 20), | |||
guide_prior=input.get('guide_prior', 3.0), | |||
guide_64=input.get('guide_64', 7.0), | |||
guide_256=input.get('guide_256', 3.0), | |||
guide_1024=input.get('guide_1024', 3.0), | |||
eta_prior=input.get('eta_prior', 0.0), | |||
eta_64=input.get('eta_64', 0.0), | |||
eta_256=input.get('eta_256', 0.0), | |||
eta_1024=input.get('eta_1024', 0.0)) | |||
imgs = [np.array(u)[..., ::-1] for u in imgs] | |||
return imgs |
@@ -0,0 +1,170 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import math | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
__all__ = ['Prior'] | |||
def sinusoidal_embedding(timesteps, dim): | |||
# check input | |||
half = dim // 2 | |||
timesteps = timesteps.float() | |||
# compute sinusoidal embedding | |||
sinusoid = torch.outer( | |||
timesteps, torch.pow(10000, | |||
-torch.arange(half).to(timesteps).div(half))) | |||
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |||
if dim % 2 != 0: | |||
x = torch.cat([x, torch.zeros_like(x[:, :1])], dim=1) | |||
return x | |||
class SelfAttention(nn.Module): | |||
def __init__(self, dim, num_heads): | |||
assert dim % num_heads == 0 | |||
super(SelfAttention, self).__init__() | |||
self.dim = dim | |||
self.num_heads = num_heads | |||
self.head_dim = dim // num_heads | |||
self.scale = math.pow(self.head_dim, -0.25) | |||
# layers | |||
self.to_qkv = nn.Linear(dim, dim * 3) | |||
self.proj = nn.Linear(dim, dim) | |||
def forward(self, x, mask): | |||
b, l, n, c = *x.shape[:2], self.num_heads, self.head_dim | |||
# compute query, key, value | |||
q, k, v = self.to_qkv(x).view(b, l, n * 3, c).chunk(3, dim=2) | |||
# compute attention | |||
attn = torch.einsum('binc,bjnc->bnij', q * self.scale, k * self.scale) | |||
if mask is not None: | |||
attn = attn.masked_fill(mask[:, :, :l, :l] == 0, float('-inf')) | |||
attn = F.softmax(attn.float(), dim=-1).type(attn.dtype) | |||
# gather context | |||
x = torch.einsum('bnij,bjnc->binc', attn, v) | |||
x = x.reshape(b, l, -1) | |||
# output | |||
x = self.proj(x) | |||
return x | |||
class AttentionBlock(nn.Module): | |||
def __init__(self, dim, num_heads): | |||
super(AttentionBlock, self).__init__() | |||
self.dim = dim | |||
self.num_heads = num_heads | |||
# layers | |||
self.norm1 = nn.LayerNorm(dim) | |||
self.attn = SelfAttention(dim, num_heads) | |||
self.norm2 = nn.LayerNorm(dim) | |||
self.ffn = nn.Sequential( | |||
nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim)) | |||
def forward(self, x, mask=None): | |||
x = x + self.attn(self.norm1(x), mask) | |||
x = x + self.ffn(self.norm2(x)) | |||
return x | |||
class Prior(nn.Module): | |||
def __init__(self, dim=2048, clip_dim=768, num_heads=32, num_layers=24): | |||
super(Prior, self).__init__() | |||
self.dim = dim | |||
self.clip_dim = clip_dim | |||
self.num_heads = num_heads | |||
self.num_layers = num_layers | |||
# embeddings | |||
self.text_embedding = nn.Sequential( | |||
nn.Linear(clip_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |||
self.time_embedding = nn.Sequential( | |||
nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |||
self.vision_embedding = nn.Sequential( | |||
nn.Linear(clip_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |||
self.eos_embedding = nn.Parameter(torch.zeros(1, 1, dim)) | |||
self.pos_embedding = nn.Parameter(torch.zeros(1, 4, dim)) | |||
# transformer | |||
self.blocks = nn.ModuleList( | |||
[AttentionBlock(dim, num_heads) for _ in range(num_layers)]) | |||
self.norm = nn.LayerNorm(dim) | |||
# head | |||
self.head = nn.Linear(dim, clip_dim) | |||
# causal attention mask | |||
self.register_buffer('attn_mask', torch.tril(torch.ones(1, 1, 4, 4))) | |||
# initialize weights | |||
self.init_weights() | |||
def forward(self, x, t, y): | |||
r"""x: [B, C]. | |||
t: [B]. | |||
y: [B, C]. | |||
""" | |||
b = x.size(0) | |||
# embeddings of shape [B, L + 4, C] | |||
u1 = sinusoidal_embedding(t, self.dim) | |||
u2 = [ | |||
self.text_embedding(y).unsqueeze(1), | |||
self.time_embedding(u1).unsqueeze(1), | |||
self.vision_embedding(x).unsqueeze(1), | |||
self.eos_embedding.repeat(b, 1, 1) | |||
] | |||
x = self.pos_embedding + torch.cat(u2, dim=1) | |||
# transformer | |||
for block in self.blocks: | |||
x = block(x, self.attn_mask) | |||
x = self.norm(x) | |||
# head | |||
x = self.head(x[:, -1]) | |||
return x | |||
def init_weights(self): | |||
std = 0.02 / math.sqrt(2.0 * self.num_layers) | |||
for name, m in self.named_modules(): | |||
if name.endswith('attn.proj') or name.endswith('ffn.2'): | |||
# smaller std for output layers | |||
nn.init.normal_(m.weight, std=std) | |||
nn.init.zeros_(m.bias) | |||
elif isinstance(m, (nn.Linear, nn.Embedding)): | |||
nn.init.normal_(m.weight, std=0.02) | |||
if isinstance(m, nn.Linear) and m.bias is not None: | |||
nn.init.zeros_(m.bias) | |||
elif isinstance(m, nn.LayerNorm): | |||
nn.init.ones_(m.weight) | |||
nn.init.zeros_(m.bias) | |||
def param_groups(self): | |||
groups = [{ | |||
'params': [ | |||
p for n, p in self.named_parameters() | |||
if 'norm' in n or n.endswith('bias') | |||
], | |||
'weight_decay': | |||
0.0 | |||
}, { | |||
'params': [ | |||
p for n, p in self.named_parameters() | |||
if not ('norm' in n or n.endswith('bias')) | |||
] | |||
}] | |||
return groups |
@@ -0,0 +1,199 @@ | |||
# The implementation here is modified based on OpenAI CLIP, publicly available at https://github.com/openai/CLIP. | |||
import gzip | |||
import html | |||
from functools import lru_cache | |||
import ftfy | |||
import regex as re | |||
import torch | |||
from transformers import AutoTokenizer | |||
__all__ = ['CLIPTokenizer', 'XGLMTokenizer'] | |||
@lru_cache() | |||
def bytes_to_unicode(): | |||
""" | |||
Returns list of utf-8 byte and a corresponding list of unicode strings. | |||
The reversible bpe codes work on unicode strings. | |||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |||
This is a signficant percentage of your normal, say, 32K bpe vocab. | |||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |||
And avoids mapping to whitespace/control characters the bpe code barfs on. | |||
""" | |||
bs = list(range(ord('!'), | |||
ord('~') + 1)) + list(range( | |||
ord('¡'), | |||
ord('¬') + 1)) + list(range(ord('®'), | |||
ord('ÿ') + 1)) | |||
cs = bs[:] | |||
n = 0 | |||
for b in range(2**8): | |||
if b not in bs: | |||
bs.append(b) | |||
cs.append(2**8 + n) | |||
n += 1 | |||
cs = [chr(n) for n in cs] | |||
return dict(zip(bs, cs)) | |||
def get_pairs(word): | |||
"""Return set of symbol pairs in a word. | |||
Word is represented as tuple of symbols (symbols being variable-length strings). | |||
""" | |||
pairs = set() | |||
prev_char = word[0] | |||
for char in word[1:]: | |||
pairs.add((prev_char, char)) | |||
prev_char = char | |||
return pairs | |||
def basic_clean(text): | |||
text = ftfy.fix_text(text) | |||
text = html.unescape(html.unescape(text)) | |||
return text.strip() | |||
def whitespace_clean(text): | |||
text = re.sub(r'\s+', ' ', text) | |||
text = text.strip() | |||
return text | |||
class SimpleTokenizer(object): | |||
def __init__(self, bpe_path): | |||
self.byte_encoder = bytes_to_unicode() | |||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |||
merges = gzip.open(bpe_path).read().decode('utf-8').split('\n') | |||
merges = merges[1:49152 - 256 - 2 + 1] | |||
merges = [tuple(merge.split()) for merge in merges] | |||
vocab = list(bytes_to_unicode().values()) | |||
vocab = vocab + [v + '</w>' for v in vocab] | |||
for merge in merges: | |||
vocab.append(''.join(merge)) | |||
vocab.extend(['<|startoftext|>', '<|endoftext|>']) | |||
self.encoder = dict(zip(vocab, range(len(vocab)))) | |||
self.decoder = {v: k for k, v in self.encoder.items()} | |||
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |||
self.cache = { | |||
'<|startoftext|>': '<|startoftext|>', | |||
'<|endoftext|>': '<|endoftext|>' | |||
} | |||
self.pat = re.compile( | |||
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", | |||
re.IGNORECASE) | |||
def bpe(self, token): | |||
if token in self.cache: | |||
return self.cache[token] | |||
word = tuple(token[:-1]) + (token[-1] + '</w>', ) | |||
pairs = get_pairs(word) | |||
if not pairs: | |||
return token + '</w>' | |||
while True: | |||
bigram = min( | |||
pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |||
if bigram not in self.bpe_ranks: | |||
break | |||
first, second = bigram | |||
new_word = [] | |||
i = 0 | |||
while i < len(word): | |||
try: | |||
j = word.index(first, i) | |||
new_word.extend(word[i:j]) | |||
i = j | |||
except Exception: | |||
new_word.extend(word[i:]) | |||
break | |||
if word[i] == first and i < len(word) - 1 and word[ | |||
i + 1] == second: | |||
new_word.append(first + second) | |||
i += 2 | |||
else: | |||
new_word.append(word[i]) | |||
i += 1 | |||
new_word = tuple(new_word) | |||
word = new_word | |||
if len(word) == 1: | |||
break | |||
else: | |||
pairs = get_pairs(word) | |||
word = ' '.join(word) | |||
self.cache[token] = word | |||
return word | |||
def encode(self, text): | |||
bpe_tokens = [] | |||
text = whitespace_clean(basic_clean(text)).lower() | |||
for token in re.findall(self.pat, text): | |||
token = ''.join(self.byte_encoder[b] | |||
for b in token.encode('utf-8')) | |||
bpe_tokens.extend(self.encoder[bpe_token] | |||
for bpe_token in self.bpe(token).split(' ')) | |||
return bpe_tokens | |||
def decode(self, tokens): | |||
text = ''.join([self.decoder[token] for token in tokens]) | |||
text = bytearray([self.byte_decoder[c] for c in text]).decode( | |||
'utf-8', errors='replace').replace('</w>', ' ') | |||
return text | |||
class CLIPTokenizer(object): | |||
r"""CLIP tokenizer, adapted from https://github.com/openai/CLIP. | |||
""" | |||
def __init__(self, bpe_path, length=77): | |||
self.bpe_path = bpe_path | |||
self.length = length | |||
# init tokenizer | |||
self.tokenizer = SimpleTokenizer(bpe_path=bpe_path) | |||
self.sos_token = self.tokenizer.encoder['<|startoftext|>'] | |||
self.eos_token = self.tokenizer.encoder['<|endoftext|>'] | |||
self.vocab_size = len(self.tokenizer.encoder) | |||
def __call__(self, sequence): | |||
if isinstance(sequence, str): | |||
return torch.LongTensor(self._tokenizer(sequence)) | |||
elif isinstance(sequence, list): | |||
return torch.LongTensor([self._tokenizer(u) for u in sequence]) | |||
else: | |||
raise TypeError( | |||
f'Expected the "sequence" to be a string or a list, but got {type(sequence)}' | |||
) | |||
def _tokenizer(self, text): | |||
tokens = self.tokenizer.encode(text)[:self.length - 2] | |||
tokens = [self.sos_token] + tokens + [self.eos_token] | |||
tokens = tokens + [0] * (self.length - len(tokens)) | |||
return tokens | |||
class XGLMTokenizer(object): | |||
r"""A wrapper of HuggingFace's XGLM tokenizer. | |||
""" | |||
def __init__(self, model_dir, length=77, **kwargs): | |||
self.length = length | |||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir, **kwargs) | |||
self.vocab_size = self.tokenizer.vocab_size | |||
def __call__(self, sequence, **kwargs): | |||
_kwargs = { | |||
'return_tensors': 'pt', | |||
'padding': 'max_length', | |||
'truncation': True, | |||
'max_length': self.length | |||
} | |||
_kwargs.update(**kwargs) | |||
tokens = self.tokenizer(sequence, **_kwargs) | |||
return tokens.input_ids, tokens.attention_mask |
@@ -0,0 +1,466 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import math | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
__all__ = ['Upsampler256', 'Upsampler1024'] | |||
def sinusoidal_embedding(timesteps, dim): | |||
# check input | |||
half = dim // 2 | |||
timesteps = timesteps.float() | |||
# compute sinusoidal embedding | |||
sinusoid = torch.outer( | |||
timesteps, torch.pow(10000, | |||
-torch.arange(half).to(timesteps).div(half))) | |||
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |||
if dim % 2 != 0: | |||
x = torch.cat([x, torch.zeros_like(x[:, :1])], dim=1) | |||
return x | |||
class Resample(nn.Module): | |||
def __init__(self, in_dim, out_dim, scale_factor, use_conv=False): | |||
assert scale_factor in [0.5, 1.0, 2.0] | |||
super(Resample, self).__init__() | |||
self.in_dim = in_dim | |||
self.out_dim = out_dim | |||
self.scale_factor = scale_factor | |||
self.use_conv = use_conv | |||
# layers | |||
if scale_factor == 2.0: | |||
self.resample = nn.Sequential( | |||
nn.Upsample(scale_factor=scale_factor, mode='nearest'), | |||
nn.Conv2d(in_dim, out_dim, 3, padding=1) | |||
if use_conv else nn.Identity()) | |||
elif scale_factor == 0.5: | |||
self.resample = nn.Conv2d( | |||
in_dim, out_dim, 3, stride=2, | |||
padding=1) if use_conv else nn.AvgPool2d( | |||
kernel_size=2, stride=2) | |||
else: | |||
self.resample = nn.Identity() | |||
def forward(self, x): | |||
return self.resample(x) | |||
class ResidualBlock(nn.Module): | |||
def __init__(self, | |||
in_dim, | |||
embed_dim, | |||
out_dim, | |||
use_scale_shift_norm=True, | |||
scale_factor=1.0, | |||
dropout=0.0): | |||
super(ResidualBlock, self).__init__() | |||
self.in_dim = in_dim | |||
self.embed_dim = embed_dim | |||
self.out_dim = out_dim | |||
self.use_scale_shift_norm = use_scale_shift_norm | |||
self.scale_factor = scale_factor | |||
# layers | |||
self.layer1 = nn.Sequential( | |||
nn.GroupNorm(32, in_dim), nn.SiLU(), | |||
nn.Conv2d(in_dim, out_dim, 3, padding=1)) | |||
self.resample = Resample(in_dim, in_dim, scale_factor, use_conv=False) | |||
self.embedding = nn.Sequential( | |||
nn.SiLU(), | |||
nn.Linear(embed_dim, | |||
out_dim * 2 if use_scale_shift_norm else out_dim)) | |||
self.layer2 = nn.Sequential( | |||
nn.GroupNorm(32, out_dim), nn.SiLU(), nn.Dropout(dropout), | |||
nn.Conv2d(out_dim, out_dim, 3, padding=1)) | |||
self.shortcut = nn.Identity() if in_dim == out_dim else nn.Conv2d( | |||
in_dim, out_dim, 1) | |||
# zero out the last layer params | |||
nn.init.zeros_(self.layer2[-1].weight) | |||
def forward(self, x, e): | |||
identity = self.resample(x) | |||
x = self.layer1[-1](self.resample(self.layer1[:-1](x))) | |||
e = self.embedding(e).unsqueeze(-1).unsqueeze(-1).type(x.dtype) | |||
if self.use_scale_shift_norm: | |||
scale, shift = e.chunk(2, dim=1) | |||
x = self.layer2[0](x) * (1 + scale) + shift | |||
x = self.layer2[1:](x) | |||
else: | |||
x = x + e | |||
x = self.layer2(x) | |||
x = x + self.shortcut(identity) | |||
return x | |||
class AttentionBlock(nn.Module): | |||
def __init__(self, dim, context_dim=None, num_heads=None, head_dim=None): | |||
# consider head_dim first, then num_heads | |||
num_heads = dim // head_dim if head_dim else num_heads | |||
head_dim = dim // num_heads | |||
assert num_heads * head_dim == dim | |||
super(AttentionBlock, self).__init__() | |||
self.dim = dim | |||
self.context_dim = context_dim | |||
self.num_heads = num_heads | |||
self.head_dim = head_dim | |||
self.scale = math.pow(head_dim, -0.25) | |||
# layers | |||
self.norm = nn.GroupNorm(32, dim) | |||
self.to_qkv = nn.Conv2d(dim, dim * 3, 1) | |||
if context_dim is not None: | |||
self.context_kv = nn.Linear(context_dim, dim * 2) | |||
self.proj = nn.Conv2d(dim, dim, 1) | |||
# zero out the last layer params | |||
nn.init.zeros_(self.proj.weight) | |||
def forward(self, x, context=None): | |||
r"""x: [B, C, H, W]. | |||
context: [B, L, C] or None. | |||
""" | |||
identity = x | |||
b, c, h, w, n, d = *x.size(), self.num_heads, self.head_dim | |||
# compute query, key, value | |||
x = self.norm(x) | |||
q, k, v = self.to_qkv(x).view(b, n * 3, d, h * w).chunk(3, dim=1) | |||
if context is not None: | |||
ck, cv = self.context_kv(context).reshape(b, -1, n * 2, | |||
d).permute(0, 2, 3, | |||
1).chunk( | |||
2, dim=1) | |||
k = torch.cat([ck, k], dim=-1) | |||
v = torch.cat([cv, v], dim=-1) | |||
# compute attention | |||
attn = torch.matmul(q.transpose(-1, -2) * self.scale, k * self.scale) | |||
attn = F.softmax(attn, dim=-1) | |||
# gather context | |||
x = torch.matmul(v, attn.transpose(-1, -2)) | |||
x = x.reshape(b, c, h, w) | |||
# output | |||
x = self.proj(x) | |||
return x + identity | |||
class Upsampler256(nn.Module): | |||
def __init__(self, | |||
in_dim=6, | |||
dim=320, | |||
y_dim=768, | |||
context_dim=512, | |||
out_dim=3, | |||
dim_mult=[1, 2, 3, 4], | |||
num_heads=None, | |||
head_dim=64, | |||
num_res_blocks=3, | |||
attn_scales=[1 / 8], | |||
resblock_resample=True, | |||
use_scale_shift_norm=True, | |||
dropout=0.1): | |||
embed_dim = dim * 4 | |||
super(Upsampler256, self).__init__() | |||
self.in_dim = in_dim | |||
self.dim = dim | |||
self.y_dim = y_dim | |||
self.context_dim = context_dim | |||
self.embed_dim = embed_dim | |||
self.out_dim = out_dim | |||
self.dim_mult = dim_mult | |||
self.num_heads = num_heads | |||
self.head_dim = head_dim | |||
self.num_res_blocks = num_res_blocks | |||
self.attn_scales = attn_scales | |||
self.resblock_resample = resblock_resample | |||
self.use_scale_shift_norm = use_scale_shift_norm | |||
# params | |||
enc_dims = [dim * u for u in [1] + dim_mult] | |||
dec_dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |||
shortcut_dims = [] | |||
scale = 1.0 | |||
# embeddings | |||
self.time_embedding = nn.Sequential( | |||
nn.Linear(dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, embed_dim)) | |||
self.y_embedding = nn.Sequential( | |||
nn.Linear(y_dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, embed_dim)) | |||
self.context_embedding = nn.Sequential( | |||
nn.Linear(y_dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, context_dim * 4)) | |||
# encoder | |||
self.encoder = nn.ModuleList( | |||
[nn.Conv2d(self.in_dim, dim, 3, padding=1)]) | |||
shortcut_dims.append(dim) | |||
for i, (in_dim, | |||
out_dim) in enumerate(zip(enc_dims[:-1], enc_dims[1:])): | |||
for j in range(num_res_blocks): | |||
# residual (+attention) blocks | |||
block = nn.ModuleList([ | |||
ResidualBlock(in_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 1.0, dropout) | |||
]) | |||
if scale in attn_scales: | |||
block.append( | |||
AttentionBlock(out_dim, context_dim, num_heads, | |||
head_dim)) | |||
in_dim = out_dim | |||
self.encoder.append(block) | |||
shortcut_dims.append(out_dim) | |||
# downsample | |||
if i != len(dim_mult) - 1 and j == num_res_blocks - 1: | |||
if resblock_resample: | |||
downsample = ResidualBlock(out_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 0.5, | |||
dropout) | |||
else: | |||
downsample = Resample( | |||
out_dim, out_dim, 0.5, use_conv=True) | |||
shortcut_dims.append(out_dim) | |||
scale /= 2.0 | |||
self.encoder.append(downsample) | |||
# middle | |||
self.middle = nn.ModuleList([ | |||
ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, | |||
1.0, dropout), | |||
AttentionBlock(out_dim, context_dim, num_heads, head_dim), | |||
ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, | |||
1.0, dropout) | |||
]) | |||
# decoder | |||
self.decoder = nn.ModuleList() | |||
for i, (in_dim, | |||
out_dim) in enumerate(zip(dec_dims[:-1], dec_dims[1:])): | |||
for j in range(num_res_blocks + 1): | |||
# residual (+attention) blocks | |||
block = nn.ModuleList([ | |||
ResidualBlock(in_dim + shortcut_dims.pop(), embed_dim, | |||
out_dim, use_scale_shift_norm, 1.0, dropout) | |||
]) | |||
if scale in attn_scales: | |||
block.append( | |||
AttentionBlock(out_dim, context_dim, num_heads, | |||
head_dim)) | |||
in_dim = out_dim | |||
# upsample | |||
if i != len(dim_mult) - 1 and j == num_res_blocks: | |||
if resblock_resample: | |||
upsample = ResidualBlock(out_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 2.0, | |||
dropout) | |||
else: | |||
upsample = Resample( | |||
out_dim, out_dim, 2.0, use_conv=True) | |||
scale *= 2.0 | |||
block.append(upsample) | |||
self.decoder.append(block) | |||
# head | |||
self.head = nn.Sequential( | |||
nn.GroupNorm(32, out_dim), nn.SiLU(), | |||
nn.Conv2d(out_dim, self.out_dim, 3, padding=1)) | |||
# zero out the last layer params | |||
nn.init.zeros_(self.head[-1].weight) | |||
def forward(self, x, t, y, concat): | |||
# embeddings | |||
x = torch.cat([x, concat], dim=1) | |||
e = self.time_embedding(sinusoidal_embedding( | |||
t, self.dim)) + self.y_embedding(y) | |||
context = self.context_embedding(y).view(-1, 4, self.context_dim) | |||
# encoder | |||
xs = [] | |||
for block in self.encoder: | |||
x = self._forward_single(block, x, e, context) | |||
xs.append(x) | |||
# middle | |||
for block in self.middle: | |||
x = self._forward_single(block, x, e, context) | |||
# decoder | |||
for block in self.decoder: | |||
x = torch.cat([x, xs.pop()], dim=1) | |||
x = self._forward_single(block, x, e, context) | |||
# head | |||
x = self.head(x) | |||
return x | |||
def _forward_single(self, module, x, e, context): | |||
if isinstance(module, ResidualBlock): | |||
x = module(x, e) | |||
elif isinstance(module, AttentionBlock): | |||
x = module(x, context) | |||
elif isinstance(module, nn.ModuleList): | |||
for block in module: | |||
x = self._forward_single(block, x, e, context) | |||
else: | |||
x = module(x) | |||
return x | |||
class Upsampler1024(nn.Module): | |||
def __init__(self, | |||
in_dim=6, | |||
dim=192, | |||
y_dim=768, | |||
out_dim=3, | |||
dim_mult=[1, 1, 2, 2, 4, 4], | |||
num_res_blocks=2, | |||
resblock_resample=True, | |||
use_scale_shift_norm=True, | |||
dropout=0.0): | |||
embed_dim = dim * 4 | |||
super(Upsampler1024, self).__init__() | |||
self.in_dim = in_dim | |||
self.dim = dim | |||
self.y_dim = y_dim | |||
self.out_dim = out_dim | |||
self.dim_mult = dim_mult | |||
self.num_res_blocks = num_res_blocks | |||
self.resblock_resample = resblock_resample | |||
self.use_scale_shift_norm = use_scale_shift_norm | |||
# params | |||
enc_dims = [dim * u for u in [1] + dim_mult] | |||
dec_dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |||
shortcut_dims = [] | |||
scale = 1.0 | |||
# embedding | |||
self.time_embedding = nn.Sequential( | |||
nn.Linear(dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, embed_dim)) | |||
self.y_embedding = nn.Sequential( | |||
nn.Linear(y_dim, embed_dim), nn.SiLU(), | |||
nn.Linear(embed_dim, embed_dim)) | |||
# encoder | |||
self.encoder = nn.ModuleList( | |||
[nn.Conv2d(self.in_dim, dim, 3, padding=1)]) | |||
shortcut_dims.append(dim) | |||
for i, (in_dim, | |||
out_dim) in enumerate(zip(enc_dims[:-1], enc_dims[1:])): | |||
for j in range(num_res_blocks): | |||
# residual block | |||
block = nn.ModuleList([ | |||
ResidualBlock(in_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 1.0, dropout) | |||
]) | |||
shortcut_dims.append(out_dim) | |||
in_dim = out_dim | |||
self.encoder.append(block) | |||
# downsample | |||
if i != len(dim_mult) - 1 and j == num_res_blocks - 1: | |||
if resblock_resample: | |||
downsample = ResidualBlock(out_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 0.5, | |||
dropout) | |||
else: | |||
downsample = Resample( | |||
out_dim, out_dim, 0.5, use_conv=True) | |||
shortcut_dims.append(out_dim) | |||
scale /= 2.0 | |||
self.encoder.append(downsample) | |||
# middle | |||
self.middle = nn.ModuleList([ | |||
ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, | |||
1.0, dropout), | |||
ResidualBlock(out_dim, embed_dim, out_dim, use_scale_shift_norm, | |||
1.0, dropout) | |||
]) | |||
# decoder | |||
self.decoder = nn.ModuleList() | |||
for i, (in_dim, | |||
out_dim) in enumerate(zip(dec_dims[:-1], dec_dims[1:])): | |||
for j in range(num_res_blocks + 1): | |||
# residual block | |||
block = nn.ModuleList([ | |||
ResidualBlock(in_dim + shortcut_dims.pop(), embed_dim, | |||
out_dim, use_scale_shift_norm, 1.0, dropout) | |||
]) | |||
in_dim = out_dim | |||
# upsample | |||
if i != len(dim_mult) - 1 and j == num_res_blocks: | |||
if resblock_resample: | |||
upsample = ResidualBlock(out_dim, embed_dim, out_dim, | |||
use_scale_shift_norm, 2.0, | |||
dropout) | |||
else: | |||
upsample = Resample( | |||
out_dim, out_dim, 2.0, use_conv=True) | |||
scale *= 2.0 | |||
block.append(upsample) | |||
self.decoder.append(block) | |||
# head | |||
self.head = nn.Sequential( | |||
nn.GroupNorm(32, out_dim), nn.SiLU(), | |||
nn.Conv2d(out_dim, self.out_dim, 3, padding=1)) | |||
# zero out the last layer params | |||
nn.init.zeros_(self.head[-1].weight) | |||
def forward(self, x, t, y, concat): | |||
# embedding | |||
x = torch.cat([x, concat], dim=1) | |||
e = self.time_embedding(sinusoidal_embedding( | |||
t, self.dim)) + self.y_embedding(y) | |||
# encoder | |||
xs = [] | |||
for block in self.encoder: | |||
x = self._forward_single(block, x, e) | |||
xs.append(x) | |||
# middle | |||
for block in self.middle: | |||
x = self._forward_single(block, x, e) | |||
# decoder | |||
for block in self.decoder: | |||
x = torch.cat([x, xs.pop()], dim=1) | |||
x = self._forward_single(block, x, e) | |||
# head | |||
x = self.head(x) | |||
return x | |||
def _forward_single(self, module, x, e): | |||
if isinstance(module, ResidualBlock): | |||
x = module(x, e) | |||
elif isinstance(module, nn.ModuleList): | |||
for block in module: | |||
x = self._forward_single(block, x, e) | |||
else: | |||
x = module(x) | |||
return x |
@@ -0,0 +1,205 @@ | |||
# The implementation here is modified based on HuggingFace XGLM, publicly available | |||
# at https://github.com/huggingface/transformers. | |||
import math | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
__all__ = ['XGLM'] | |||
def sinusoidal_embedding(seq_len, dim, pad_token=None): | |||
half = dim // 2 | |||
sinusoid = torch.outer( | |||
torch.arange(seq_len, dtype=torch.float32), | |||
torch.pow(10000, | |||
-torch.arange(half, dtype=torch.float32).div(half - 1))) | |||
x = torch.cat([torch.sin(sinusoid), torch.cos(sinusoid)], dim=1) | |||
if dim % 2 == 1: | |||
x = torch.cat([x, torch.zeros_like(x[:, :1])], dim=1) | |||
if pad_token is not None: | |||
x[pad_token, :] = 0 | |||
return x | |||
class SinusoidalEmbedding(nn.Module): | |||
def __init__(self, seq_len, dim, pad_token): | |||
super(SinusoidalEmbedding, self).__init__() | |||
self.seq_len = seq_len | |||
self.dim = dim | |||
self.pad_token = pad_token | |||
self.register_buffer('weight', | |||
sinusoidal_embedding(seq_len + 2, dim, pad_token)) | |||
def forward(self, tokens): | |||
mask = tokens.ne(self.pad_token).long() | |||
indices = torch.cumsum(mask, dim=1) * mask + self.pad_token | |||
pos_embeds = self.weight.index_select(0, indices.view(-1)).view( | |||
*tokens.shape, -1) | |||
return pos_embeds | |||
class GELU(nn.Module): | |||
def forward(self, x): | |||
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |||
class SelfAttention(nn.Module): | |||
def __init__(self, dim, num_heads, dropout=0.1): | |||
assert dim % num_heads == 0 | |||
super(SelfAttention, self).__init__() | |||
self.dim = dim | |||
self.num_heads = num_heads | |||
self.head_dim = dim // num_heads | |||
self.scale = 1.0 / math.sqrt(self.head_dim) | |||
# layers | |||
self.q = nn.Linear(dim, dim) | |||
self.k = nn.Linear(dim, dim) | |||
self.v = nn.Linear(dim, dim) | |||
self.o = nn.Linear(dim, dim) | |||
self.dropout = nn.Dropout(dropout) | |||
def forward(self, x, mask=None): | |||
r"""x: [B, L, C]. | |||
mask: [B, *, L, L] or None. | |||
""" | |||
b, l, n, c = *x.shape[:2], self.num_heads, self.head_dim | |||
# compute query, key, value | |||
q = self.q(x).view(b, l, n, c) | |||
k = self.k(x).view(b, l, n, c) | |||
v = self.v(x).view(b, l, n, c) | |||
# compute attention | |||
attn = self.scale * torch.einsum('binc,bjnc->bnij', q, k) | |||
if mask is not None: | |||
attn = attn.masked_fill(mask == 0, float('-inf')) | |||
attn = F.softmax(attn, dim=-1) | |||
attn = self.dropout(attn) | |||
# gather context | |||
x = torch.einsum('bnij,bjnc->binc', attn, v) | |||
x = x.reshape(b, l, -1) | |||
# output | |||
x = self.o(x) | |||
x = self.dropout(x) | |||
return x | |||
class AttentionBlock(nn.Module): | |||
def __init__(self, dim, ffn_dim, ffn_act, num_heads, dropout=0.1): | |||
assert ffn_act in ['gelu', 'relu'] | |||
super(AttentionBlock, self).__init__() | |||
self.dim = dim | |||
self.ffn_dim = ffn_dim | |||
self.ffn_act = ffn_act | |||
self.num_heads = num_heads | |||
# layers | |||
self.norm1 = nn.LayerNorm(dim) | |||
self.attn = SelfAttention(dim, num_heads, dropout) | |||
self.norm2 = nn.LayerNorm(dim) | |||
self.ffn = nn.Sequential( | |||
nn.Linear(dim, ffn_dim), | |||
GELU() if ffn_act == 'gelu' else nn.ReLU(inplace=True), | |||
nn.Linear(ffn_dim, dim), nn.Dropout(dropout)) | |||
def forward(self, x, mask=None): | |||
x = x + self.attn(self.norm1(x), mask) | |||
x = x + self.ffn(self.norm2(x)) | |||
return x | |||
class XGLM(nn.Module): | |||
r"""A multilingual GPT model with an embedding head. | |||
""" | |||
def __init__(self, | |||
vocab_size=256008, | |||
max_seq_len=2048, | |||
dim=1024, | |||
ffn_dim=4096, | |||
ffn_act='gelu', | |||
embed_dim=768, | |||
num_heads=16, | |||
num_layers=24, | |||
pad_token=1, | |||
dropout=0.1): | |||
super(XGLM, self).__init__() | |||
self.vocab_size = vocab_size | |||
self.max_seq_len = max_seq_len | |||
self.dim = dim | |||
self.ffn_dim = ffn_dim | |||
self.ffn_act = ffn_act | |||
self.embed_dim = embed_dim | |||
self.num_heads = num_heads | |||
self.num_layers = num_layers | |||
self.pad_token = pad_token | |||
self.scale = math.sqrt(dim) # rescale token embedings | |||
# layers | |||
self.token_embedding = nn.Embedding(vocab_size, dim, pad_token) | |||
self.pos_embedding = SinusoidalEmbedding(max_seq_len, dim, pad_token) | |||
self.eos_embedding = nn.Parameter(torch.randn(1, 1, dim)) | |||
self.dropout = nn.Dropout(dropout) | |||
self.blocks = nn.ModuleList([ | |||
AttentionBlock(dim, ffn_dim, ffn_act, num_heads, dropout) | |||
for _ in range(num_layers) | |||
]) | |||
self.norm = nn.LayerNorm(dim) | |||
self.head = nn.Linear(dim, embed_dim, bias=False) | |||
# causal attention mask | |||
self.register_buffer( | |||
'attn_mask', | |||
torch.tril(torch.ones(1, 1, 1 + max_seq_len, 1 + max_seq_len))) | |||
# init weights | |||
self.apply(self.init_weights) | |||
def forward(self, tokens, mask=None): | |||
r"""tokens: [B, L]. | |||
mask: [B, L]. | |||
""" | |||
b, seq_len = tokens.size(0), 1 + tokens.size(1) | |||
# embeddings | |||
x = self.scale * self.token_embedding(tokens) | |||
x = torch.cat([x, self.eos_embedding.repeat(b, 1, 1)], dim=1) | |||
# x = x + self.pos_embedding(tokens) | |||
x = self.dropout(x) | |||
# attention mask | |||
if mask is None: | |||
mask = self.attn_mask[:, :, :seq_len, :seq_len].repeat(b, 1, 1, 1) | |||
else: | |||
mask = self.attn_mask[:, :, :seq_len, :seq_len] * torch.cat( | |||
[mask, torch.zeros_like(mask[:, :1])], dim=1).view( | |||
b, 1, 1, seq_len) | |||
# transformer | |||
for block in self.blocks: | |||
x = block(x, mask) | |||
x = self.norm(x) | |||
# head | |||
logits = self.head(x[:, -1]) | |||
return logits | |||
def init_weights(self, m): | |||
if isinstance(m, nn.Linear): | |||
nn.init.normal_(m.weight, std=0.02) | |||
if m.bias is not None: | |||
nn.init.zeros_(m.bias) | |||
elif isinstance(m, nn.Embedding): | |||
nn.init.normal_(m.weight, std=0.02) | |||
if m.padding_idx is not None: | |||
nn.init.zeros_(m.weight[m.padding_idx]) |
@@ -3,7 +3,8 @@ from typing import Any, Dict, Optional | |||
import torch | |||
from modelscope.metainfo import Pipelines | |||
from modelscope.models.multi_modal import OfaForTextToImageSynthesis | |||
from modelscope.models.multi_modal import ( | |||
MultiStageDiffusionForTextToImageSynthesis, OfaForTextToImageSynthesis) | |||
from modelscope.outputs import OutputKeys | |||
from modelscope.pipelines.base import Input, Model, Pipeline | |||
from modelscope.pipelines.builder import PIPELINES | |||
@@ -48,7 +49,9 @@ class TextToImageSynthesisPipeline(Pipeline): | |||
return input | |||
def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||
if isinstance(self.model, OfaForTextToImageSynthesis): | |||
if isinstance(self.model, | |||
(OfaForTextToImageSynthesis, | |||
MultiStageDiffusionForTextToImageSynthesis)): | |||
return self.model(input) | |||
return self.model.generate(input) | |||
@@ -0,0 +1,40 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import unittest | |||
import numpy as np | |||
import torch | |||
from modelscope.models import Model | |||
from modelscope.outputs import OutputKeys | |||
from modelscope.pipelines import pipeline | |||
from modelscope.utils.constant import Tasks | |||
from modelscope.utils.test_utils import test_level | |||
class MultiStageDiffusionTest(unittest.TestCase): | |||
model_id = 'damo/cv_diffusion_text-to-image-synthesis' | |||
test_text = {'text': 'Photograph of a baby chicken wearing sunglasses'} | |||
@unittest.skip( | |||
'skip test since the pretrained model is not publicly available') | |||
def test_run_with_model_from_modelhub(self): | |||
model = Model.from_pretrained(self.model_id) | |||
pipe_line_text_to_image_synthesis = pipeline( | |||
task=Tasks.text_to_image_synthesis, model=model) | |||
img = pipe_line_text_to_image_synthesis( | |||
self.test_text)[OutputKeys.OUTPUT_IMG] | |||
print(np.sum(np.abs(img))) | |||
@unittest.skip( | |||
'skip test since the pretrained model is not publicly available') | |||
def test_run_with_model_name(self): | |||
pipe_line_text_to_image_synthesis = pipeline( | |||
task=Tasks.text_to_image_synthesis, model=self.model_id) | |||
img = pipe_line_text_to_image_synthesis( | |||
self.test_text)[OutputKeys.OUTPUT_IMG] | |||
print(np.sum(np.abs(img))) | |||
if __name__ == '__main__': | |||
unittest.main() |