yichang.zyc yingda.chen 3 years ago
parent
commit
cb12a7c6f8
8 changed files with 563 additions and 29 deletions
  1. +2
    -1
      modelscope/models/multi_modal/ofa/__init__.py
  2. +4
    -0
      modelscope/models/multi_modal/ofa/configuration_ofa.py
  3. +20
    -21
      modelscope/models/multi_modal/ofa/modeling_ofa.py
  4. +322
    -0
      modelscope/models/multi_modal/ofa/tokenization_ofa.py
  5. +156
    -1
      modelscope/models/multi_modal/ofa/tokenization_ofa_fast.py
  6. +14
    -4
      modelscope/models/multi_modal/ofa_for_all_tasks.py
  7. +10
    -2
      modelscope/preprocessors/ofa/base.py
  8. +35
    -0
      tests/pipelines/test_ofa_tasks.py

+ 2
- 1
modelscope/models/multi_modal/ofa/__init__.py View File

@@ -1,2 +1,3 @@
from .modeling_ofa import OFADecoder, OFAEncoder, OFAModel, OFAPreTrainedModel
from .tokenization_ofa import OFATokenizer
from .tokenization_ofa import OFATokenizer, OFATokenizerZH
from .tokenization_ofa_fast import OFATokenizerFast, OFATokenizerZHFast

+ 4
- 0
modelscope/models/multi_modal/ofa/configuration_ofa.py View File

@@ -134,6 +134,8 @@ class OFAConfig(PretrainedConfig):
code_layernorm_embedding=True,
code_image_size=128,
entangle_position_embedding=False,
interpolate_position=False,
orig_patch_image_size=224,
**kwargs):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
@@ -173,6 +175,8 @@ class OFAConfig(PretrainedConfig):
self.code_layernorm_embedding = code_layernorm_embedding
self.code_image_size = code_image_size
self.entangle_position_embedding = entangle_position_embedding
self.interpolate_position = interpolate_position
self.orig_patch_image_size = orig_patch_image_size

super().__init__(
pad_token_id=pad_token_id,


+ 20
- 21
modelscope/models/multi_modal/ofa/modeling_ofa.py View File

@@ -311,7 +311,6 @@ class OFAAttention(nn.Module):
self.head_dim * num_heads == self.embed_dim
), f'embed_dim must be divisible by num_heads ' \
f'(got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads}).'
# self.scaling = self.head_dim ** -0.5
# 1. difference
scale_factor = 2
self.scaling = float(self.head_dim * scale_factor)**-0.5
@@ -913,7 +912,6 @@ class OFAEncoder(OFAPreTrainedModel):
else:
raise NotImplementedError

# self.image_proj = nn.Linear(1024, embed_dim)
self.image_proj = Linear(1024, embed_dim)

if config.resnet_model_path:
@@ -1075,7 +1073,25 @@ class OFAEncoder(OFAPreTrainedModel):
image_num_patches = sample_patch_num
image_padding_mask = image_padding_mask.gather(1, patch_orders)
image_position_ids = image_position_ids.gather(1, patch_orders)
image_pos_embed = self.embed_image_positions(image_position_ids)
orig_num_patches = (self.config.orig_patch_image_size // 16)**2
orig_hw = self.config.orig_patch_image_size // 16
if self.config.interpolate_position and image_num_patches > orig_num_patches:
old_image_position_ids = torch.arange(orig_hw).unsqueeze(0).expand(orig_hw, orig_hw) + \
torch.arange(orig_hw).unsqueeze(1) * \
self.config.image_bucket_size + 1 # noqa
old_image_position_ids = old_image_position_ids.to(device)
old_image_pos_embed = self.embed_image_positions(
old_image_position_ids)
old_image_pos_embed = old_image_pos_embed.reshape(
1, orig_hw, orig_hw, -1).permute(0, 3, 1, 2)
image_pos_embed = F.interpolate(
old_image_pos_embed, size=(h, w), mode='bilinear')
image_pos_embed = image_pos_embed.permute(0, 2, 3, 1).reshape(
1, image_num_patches, -1)
image_pos_embed = image_pos_embed.expand(
patch_images.size(0), -1, -1)
else:
image_pos_embed = self.embed_image_positions(image_position_ids)

return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed

@@ -1250,7 +1266,6 @@ class OFAEncoder(OFAPreTrainedModel):
position_embedding (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`):
positional embeddings of the input image and tokens.
"""

image_embed = None
image_embed_2 = None
image_pos_embed = None
@@ -1258,14 +1273,7 @@ class OFAEncoder(OFAPreTrainedModel):
if patch_images is not None:
image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
self.get_patch_images_info(patch_images, sample_patch_num, input_ids.device)
# print("patch_masks.shape")
# print(patch_masks.shape)
# print(patch_masks)
# print("image_padding_mask.shape")
# print(image_padding_mask.shape)
# print(image_padding_mask)
image_padding_mask[~patch_masks] = True
# print(image_padding_mask)
if patch_images_2 is not None:
image_embed_2, image_num_patches_2, image_padding_mask_2, image_position_ids_2, image_pos_embed_2 = \
self.get_patch_images_info(patch_images_2, sample_patch_num, input_ids.device)
@@ -1313,10 +1321,6 @@ class OFAEncoder(OFAPreTrainedModel):
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None

# if output_hidden_states:
# # encoder_states.append(x)
# encoder_states += (x,)

# encoder layers
for idx, layer in enumerate(self.layers):
if output_hidden_states:
@@ -1645,7 +1649,6 @@ class OFADecoder(OFAPreTrainedModel):

def reorder_incremental_state_scripting(
self,
# incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
past_key_values: Optional[torch.Tensor],
new_order: Tensor,
):
@@ -1799,15 +1802,12 @@ class OFADecoder(OFAPreTrainedModel):

self_attn_bias = self_abs_pos_bias.clone()
if code_masks is None or not code_masks.any():
# print("code_masks is None or not code_masks.any()")
self_attn_bias += self.get_rel_pos_bias(
all_prev_output_tokens, idx).unsqueeze(0)
elif code_masks is not None and code_masks.all():
# print("code_masks is not None and code_masks.all()")
self_attn_bias += self.get_image_rel_pos_bias(
all_prev_output_tokens, idx).unsqueeze(0)
else:
# print("else")
self_attn_bias[~code_masks] += self.get_rel_pos_bias(
all_prev_output_tokens, idx).unsqueeze(0)
self_attn_bias[code_masks] += self.get_image_rel_pos_bias(
@@ -1921,7 +1921,7 @@ class OFAModel(OFAPreTrainedModel):
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
# 新增函数以适配fairseq的generator
# an adaptor for fairseq generator
def max_decoder_positions(self):
"""Maximum length supported by the decoder."""
return self.decoder.max_positions()
@@ -2062,7 +2062,6 @@ class OFAModel(OFAPreTrainedModel):

return Seq2SeqLMOutput(
logits=decoder_outputs.last_hidden_state,
# last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,


+ 322
- 0
modelscope/models/multi_modal/ofa/tokenization_ofa.py View File

@@ -12,7 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OFA."""
import collections
import os
from typing import List, Optional, Tuple

from transformers import PreTrainedTokenizer
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import (BasicTokenizer,
WordpieceTokenizer)
from transformers.utils import logging

logger = logging.get_logger(__name__)
@@ -26,12 +33,37 @@ PRETRAINED_VOCAB_FILES_MAP = {
'merges_file': {
'ofa-base': 'https://huggingface.co/ofa-base/resolve/main/merges.txt',
},
# OFA models are implemented to be compatible with both huggingface
# and modelscope frameworks. For all OFA models available on huggingface,
# please refer to https://huggingface.co/models?filter=ofa
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
'ofa-base': 1024,
}

VOCAB_FILES_NAMES_ZH = {'vocab_file': 'vocab.txt'}

PRETRAINED_VOCAB_FILES_MAP_ZH = {
'vocab_file': {
'bert-base-chinese':
'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt',
}
# OFA models are implemented to be compatible with both huggingface
# and modelscope frameworks. For all OFA models available on huggingface,
# please refer to https://huggingface.co/models?filter=ofa
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES_ZH = {
'ofa-base': 1024,
}

PRETRAINED_INIT_CONFIGURATION_ZH = {
'bert-base-chinese': {
'do_lower_case': True
},
}


class OFATokenizer(BartTokenizer):
"""
@@ -46,3 +78,293 @@ class OFATokenizer(BartTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES


def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, 'r', encoding='utf-8') as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip('\n')
vocab[token] = index
return vocab


def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens


class OFATokenizerZH(PreTrainedTokenizer):
r"""
Construct a OFA tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.

Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

<Tip>

When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.

</Tip>

eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.

<Tip>

When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.

</Tip>

sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.

This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""

vocab_files_names = VOCAB_FILES_NAMES_ZH
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP_ZH
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION_ZH
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES_ZH

def __init__(self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
bos_token='<s>',
eos_token='</s>',
sep_token='</s>',
cls_token='<s>',
unk_token='<unk>',
pad_token='<pad>',
mask_token='<mask>',
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs):
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)

if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
'model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`'
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([
(ids, tok) for tok, ids in self.vocab.items()
])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(
vocab=self.vocab, unk_token=self.unk_token)

@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case

@property
def vocab_size(self):
return len(self.vocab)

def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)

def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens):

# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens

def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))

def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)

def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = ' '.join(tokens).replace(' ##', '').strip()
return out_string

def build_inputs_with_special_tokens(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:

- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`

Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.

Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep

def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.

Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.

Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""

if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True)

if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + (
[0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]

def create_token_type_ids_from_sequences(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:

```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```

If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).

Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.

Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1
+ sep) * [1]

def save_vocabulary(self,
save_directory: str,
filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory,
(filename_prefix + '-' if filename_prefix else '')
+ VOCAB_FILES_NAMES['vocab_file'])
else:
vocab_file = (filename_prefix
+ '-' if filename_prefix else '') + save_directory
with open(vocab_file, 'w', encoding='utf-8') as writer:
for token, token_index in sorted(
self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!')
index = token_index
writer.write(token + '\n')
index += 1
return (vocab_file, )

+ 156
- 1
modelscope/models/multi_modal/ofa/tokenization_ofa_fast.py View File

@@ -12,10 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OFA."""
from typing import List, Optional, Tuple

import json
from tokenizers import normalizers
from transformers import PreTrainedTokenizerFast
from transformers.models.bart.tokenization_bart_fast import BartTokenizerFast
from transformers.utils import logging

from .tokenization_ofa import OFATokenizer
from .tokenization_ofa import OFATokenizer, OFATokenizerZH

logger = logging.get_logger(__name__)

@@ -36,12 +41,37 @@ PRETRAINED_VOCAB_FILES_MAP = {
'ofa-base':
'https://huggingface.co/ofa-base/resolve/main/tokenizer.json',
},
# OFA models are implemented to be compatible with both huggingface
# and modelscope frameworks. For all OFA models available on huggingface,
# please refer to https://huggingface.co/models?filter=ofa
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
'ofa-base': 1024,
}

VOCAB_FILES_NAMES_ZH = {'vocab_file': 'vocab.txt'}

PRETRAINED_VOCAB_FILES_MAP_ZH = {
'vocab_file': {
'bert-base-chinese':
'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt',
}
# OFA models are implemeted to be compatible with both huggingface
# and modelscope frameworks. For all OFA models available on huggingface,
# please refer to https://huggingface.co/models?filter=ofa
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES_ZH = {
'ofa-base': 1024,
}

PRETRAINED_INIT_CONFIGURATION_ZH = {
'bert-base-chinese': {
'do_lower_case': True
},
}


class OFATokenizerFast(BartTokenizerFast):
r"""
@@ -57,3 +87,128 @@ class OFATokenizerFast(BartTokenizerFast):
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = OFATokenizer


class OFATokenizerZHFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" OFA tokenizer (backed by HuggingFace's *tokenizers* library).

[`~OFATokenizerFast`] is identical to [`BartTokenizerFast`] and runs end-to-end tokenization: punctuation splitting
and wordpiece.

Refer to superclass [`BartTokenizerFast`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES_ZH
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP_ZH
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION_ZH
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES_ZH
slow_tokenizer_class = OFATokenizerZH

def __init__(self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
bos_token='<s>',
eos_token='</s>',
sep_token='</s>',
cls_token='<s>',
unk_token='<unk>',
pad_token='<pad>',
mask_token='<mask>',
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)

normalizer_state = json.loads(
self.backend_tokenizer.normalizer.__getstate__())
if (normalizer_state.get('lowercase', do_lower_case) != do_lower_case
or normalizer_state.get('strip_accents', strip_accents)
!= strip_accents or normalizer_state.get(
'handle_chinese_chars',
tokenize_chinese_chars) != tokenize_chinese_chars):
normalizer_class = getattr(normalizers,
normalizer_state.pop('type'))
normalizer_state['lowercase'] = do_lower_case
normalizer_state['strip_accents'] = strip_accents
normalizer_state['handle_chinese_chars'] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(
**normalizer_state)

self.do_lower_case = do_lower_case

def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:

- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`

Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.

Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]

if token_ids_1:
output += token_ids_1 + [self.sep_token_id]

return output

def create_token_type_ids_from_sequences(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:

```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```

If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).

Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.

Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1
+ sep) * [1]

def save_vocabulary(self,
save_directory: str,
filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(
save_directory, name=filename_prefix)
return tuple(files)

+ 14
- 4
modelscope/models/multi_modal/ofa_for_all_tasks.py View File

@@ -16,7 +16,7 @@ from modelscope.preprocessors.ofa.utils.collate import collate_tokens
from modelscope.utils.config import Config
from modelscope.utils.constant import ModelFile
from modelscope.utils.trie import Trie
from .ofa import OFAModel, OFATokenizer
from .ofa import OFAModel, OFATokenizer, OFATokenizerZH
from .ofa.generate import sequence_generator as sg
from .ofa.generate.utils import move_to_device
from .ofa.utils.constant import OFA_TASK_KEY_MAPPING, Tasks
@@ -41,11 +41,21 @@ class OfaForAllTasks(TorchModel):
self.cfg = Config.from_file(
osp.join(model_dir, ModelFile.CONFIGURATION))
self.model = model.module if hasattr(model, 'module') else model
self.tokenizer = OFATokenizer.from_pretrained(model_dir)
self.language = self.cfg.model.get('language', 'en')
if self.language == 'en':
self.tokenizer = OFATokenizer.from_pretrained(model_dir)
elif self.language in ['zh', 'cn']:
self.tokenizer = OFATokenizerZH.from_pretrained(model_dir)
else:
raise NotImplementedError
# there is some diff between here and our ofa code,
# there will be no need to use param: use_bpe
self.tokenizer.add_tokens(['<code_{}>'.format(i) for i in range(8192)])
self.tokenizer.add_tokens(['<bin_{}>'.format(i) for i in range(1000)])
self.cfg.update({'num_bins': 1000, 'num_codes': 8192})
self.batch_size = self.cfg.model.get('batch_size', 1)
self.patch_image_size = self.cfg.model.get('patch_image_size', 480)
self.max_image_size = self.cfg.model.get('max_image_size', 512)
self.val_batch_size = self.cfg.model.get('valid_batch_size',
self.batch_size)
self.gen_type = self.cfg.model.get('gen_type', 'generation')
@@ -129,8 +139,8 @@ class OfaForAllTasks(TorchModel):
- len(self.tokenizer.get_vocab().items())
+ self.cfg.num_bins)
region_tensor = torch.stack(region_coord_l, dim=0)
region_tensor = region_tensor / (
self.cfg.num_bins - 1) * self.cfg.model.get('max_image_size', 512)
region_tensor = region_tensor / (self.cfg.num_bins
- 1) * self.max_image_size
region_tensor[:, ::2] /= input['w_resize_ratios']
region_tensor[:, 1::2] /= input['h_resize_ratios']
return {


+ 10
- 2
modelscope/preprocessors/ofa/base.py View File

@@ -6,7 +6,7 @@ import json
import numpy as np
import torch

from modelscope.models.multi_modal.ofa import OFATokenizer
from modelscope.models.multi_modal.ofa import OFATokenizer, OFATokenizerZH
from modelscope.utils.trie import Trie
from .utils.random_help import set_torch_seed

@@ -21,7 +21,15 @@ class OfaBasePreprocessor:
model_dir (str): model path
"""
self.cfg = cfg
tokenizer = OFATokenizer.from_pretrained(model_dir)
self.language = self.cfg.model.get('language', 'en')
if self.language == 'en':
tokenizer = OFATokenizer.from_pretrained(model_dir)
elif self.language in ['zh', 'cn']:
tokenizer = OFATokenizerZH.from_pretrained(model_dir)
else:
raise NotImplementedError
# there is some diff between here and our ofa code,
# there will be no need to use param: use_bpe
tokenizer.add_tokens(['<code_{}>'.format(i) for i in range(8192)])
tokenizer.add_tokens(['<bin_{}>'.format(i) for i in range(1000)])
self.tokenizer = tokenizer


+ 35
- 0
tests/pipelines/test_ofa_tasks.py View File

@@ -1,17 +1,33 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import unittest
from os import path as osp

import cv2
import numpy as np
from PIL import Image

from modelscope.models import Model
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.preprocessors.image import load_image
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level


class OfaTasksTest(unittest.TestCase):

def setUp(self) -> None:
self.output_dir = 'unittest_output'
os.makedirs(self.output_dir, exist_ok=True)

def save_img(self, image_in, box, image_out):
image = load_image(image_in)
img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
cv2.rectangle(img, (int(box[0]), int(box[1])),
(int(box[2]), int(box[3])), (0, 255, 0), 3)
cv2.imwrite(osp.join(self.output_dir, image_out), img)

@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_image_captioning_with_model(self):
model = Model.from_pretrained('damo/ofa_image-caption_coco_large_en')
@@ -132,6 +148,9 @@ class OfaTasksTest(unittest.TestCase):
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
image_name = image.split('/')[-2]
self.save_img(image, result[OutputKeys.BOXES],
osp.join('large_en_model_' + image_name + '.png'))

@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_visual_grounding_with_name(self):
@@ -143,6 +162,22 @@ class OfaTasksTest(unittest.TestCase):
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
image_name = image.split('/')[-2]
self.save_img(image, result[OutputKeys.BOXES],
osp.join('large_en_name_' + image_name + '.png'))

@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_visual_grounding_zh_with_name(self):
model = 'damo/ofa_visual-grounding_refcoco_large_zh'
ofa_pipe = pipeline(Tasks.visual_grounding, model=model)
image = 'data/test/images/visual_grounding.png'
text = '一个圆头的蓝色宝可梦'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
image_name = image.split('/')[-1]
self.save_img(image, result[OutputKeys.BOXES],
osp.join('large_zh_name_' + image_name))

@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_visual_question_answering_with_model(self):


Loading…
Cancel
Save