|
|
@@ -0,0 +1,638 @@ |
|
|
|
# ------------------------------------------------------------------------------ |
|
|
|
# Copyright (c) Microsoft |
|
|
|
# Licensed under the MIT License. |
|
|
|
# Written by Bin Xiao (Bin.Xiao@microsoft.com) |
|
|
|
# Modified by Ke Sun (sunk@mail.ustc.edu.cn) |
|
|
|
# https://github.com/HRNet/HRNet-Image-Classification/blob/master/lib/models/cls_hrnet.py |
|
|
|
# ------------------------------------------------------------------------------ |
|
|
|
|
|
|
|
import functools |
|
|
|
import logging |
|
|
|
import os |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import torch |
|
|
|
import torch._utils |
|
|
|
import torch.nn as nn |
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
from modelscope.utils.logger import get_logger |
|
|
|
|
|
|
|
BN_MOMENTUM = 0.01 # 0.01 for seg |
|
|
|
logger = get_logger() |
|
|
|
|
|
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
|
|
"""3x3 convolution with padding""" |
|
|
|
return nn.Conv2d( |
|
|
|
in_planes, |
|
|
|
out_planes, |
|
|
|
kernel_size=3, |
|
|
|
stride=stride, |
|
|
|
padding=1, |
|
|
|
bias=False) |
|
|
|
|
|
|
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
|
expansion = 1 |
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
|
super(BasicBlock, self).__init__() |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
|
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.conv2 = conv3x3(planes, planes) |
|
|
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
|
self.downsample = downsample |
|
|
|
self.stride = stride |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
residual = x |
|
|
|
|
|
|
|
out = self.conv1(x) |
|
|
|
out = self.bn1(out) |
|
|
|
out = self.relu(out) |
|
|
|
|
|
|
|
out = self.conv2(out) |
|
|
|
out = self.bn2(out) |
|
|
|
|
|
|
|
if self.downsample is not None: |
|
|
|
residual = self.downsample(x) |
|
|
|
|
|
|
|
out += residual |
|
|
|
out = self.relu(out) |
|
|
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
expansion = 4 |
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
|
super(Bottleneck, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
|
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
|
self.conv2 = nn.Conv2d( |
|
|
|
planes, |
|
|
|
planes, |
|
|
|
kernel_size=3, |
|
|
|
stride=stride, |
|
|
|
padding=1, |
|
|
|
bias=False) |
|
|
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
|
|
self.conv3 = nn.Conv2d( |
|
|
|
planes, planes * self.expansion, kernel_size=1, bias=False) |
|
|
|
self.bn3 = nn.BatchNorm2d( |
|
|
|
planes * self.expansion, momentum=BN_MOMENTUM) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.downsample = downsample |
|
|
|
self.stride = stride |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
residual = x |
|
|
|
|
|
|
|
out = self.conv1(x) |
|
|
|
out = self.bn1(out) |
|
|
|
out = self.relu(out) |
|
|
|
|
|
|
|
out = self.conv2(out) |
|
|
|
out = self.bn2(out) |
|
|
|
out = self.relu(out) |
|
|
|
|
|
|
|
out = self.conv3(out) |
|
|
|
out = self.bn3(out) |
|
|
|
|
|
|
|
if self.downsample is not None: |
|
|
|
residual = self.downsample(x) |
|
|
|
|
|
|
|
out += residual |
|
|
|
out = self.relu(out) |
|
|
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
num_branches, |
|
|
|
blocks, |
|
|
|
num_blocks, |
|
|
|
num_inchannels, |
|
|
|
num_channels, |
|
|
|
fuse_method, |
|
|
|
multi_scale_output=True): |
|
|
|
super(HighResolutionModule, self).__init__() |
|
|
|
self._check_branches(num_branches, blocks, num_blocks, num_inchannels, |
|
|
|
num_channels) |
|
|
|
|
|
|
|
self.num_inchannels = num_inchannels |
|
|
|
self.fuse_method = fuse_method |
|
|
|
self.num_branches = num_branches |
|
|
|
|
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
|
|
|
|
self.branches = self._make_branches(num_branches, blocks, num_blocks, |
|
|
|
num_channels) |
|
|
|
self.fuse_layers = self._make_fuse_layers() |
|
|
|
self.relu = nn.ReLU(False) |
|
|
|
|
|
|
|
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, |
|
|
|
num_channels): |
|
|
|
if num_branches != len(num_blocks): |
|
|
|
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( |
|
|
|
num_branches, len(num_blocks)) |
|
|
|
logger.info(error_msg) |
|
|
|
raise ValueError(error_msg) |
|
|
|
|
|
|
|
if num_branches != len(num_channels): |
|
|
|
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( |
|
|
|
num_branches, len(num_channels)) |
|
|
|
logger.info(error_msg) |
|
|
|
raise ValueError(error_msg) |
|
|
|
|
|
|
|
if num_branches != len(num_inchannels): |
|
|
|
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( |
|
|
|
num_branches, len(num_inchannels)) |
|
|
|
logger.info(error_msg) |
|
|
|
raise ValueError(error_msg) |
|
|
|
|
|
|
|
def _make_one_branch(self, |
|
|
|
branch_index, |
|
|
|
block, |
|
|
|
num_blocks, |
|
|
|
num_channels, |
|
|
|
stride=1): |
|
|
|
downsample = None |
|
|
|
if stride != 1 or \ |
|
|
|
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: |
|
|
|
downsample = nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
self.num_inchannels[branch_index], |
|
|
|
num_channels[branch_index] * block.expansion, |
|
|
|
kernel_size=1, |
|
|
|
stride=stride, |
|
|
|
bias=False), |
|
|
|
nn.BatchNorm2d( |
|
|
|
num_channels[branch_index] * block.expansion, |
|
|
|
momentum=BN_MOMENTUM), |
|
|
|
) |
|
|
|
|
|
|
|
layers = [] |
|
|
|
layers.append( |
|
|
|
block(self.num_inchannels[branch_index], |
|
|
|
num_channels[branch_index], stride, downsample)) |
|
|
|
self.num_inchannels[branch_index] = \ |
|
|
|
num_channels[branch_index] * block.expansion |
|
|
|
for i in range(1, num_blocks[branch_index]): |
|
|
|
layers.append( |
|
|
|
block(self.num_inchannels[branch_index], |
|
|
|
num_channels[branch_index])) |
|
|
|
|
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
|
|
branches = [] |
|
|
|
|
|
|
|
for i in range(num_branches): |
|
|
|
branches.append( |
|
|
|
self._make_one_branch(i, block, num_blocks, num_channels)) |
|
|
|
|
|
|
|
return nn.ModuleList(branches) |
|
|
|
|
|
|
|
def _make_fuse_layers(self): |
|
|
|
if self.num_branches == 1: |
|
|
|
return None |
|
|
|
|
|
|
|
num_branches = self.num_branches |
|
|
|
num_inchannels = self.num_inchannels |
|
|
|
fuse_layers = [] |
|
|
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
|
|
fuse_layer = [] |
|
|
|
for j in range(num_branches): |
|
|
|
if j > i: |
|
|
|
fuse_layer.append( |
|
|
|
nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
num_inchannels[j], |
|
|
|
num_inchannels[i], |
|
|
|
1, |
|
|
|
1, |
|
|
|
0, |
|
|
|
bias=False), |
|
|
|
nn.BatchNorm2d( |
|
|
|
num_inchannels[i], momentum=BN_MOMENTUM), |
|
|
|
nn.Upsample( |
|
|
|
scale_factor=2**(j - i), mode='nearest'))) |
|
|
|
elif j == i: |
|
|
|
fuse_layer.append(None) |
|
|
|
else: |
|
|
|
conv3x3s = [] |
|
|
|
for k in range(i - j): |
|
|
|
if k == i - j - 1: |
|
|
|
num_outchannels_conv3x3 = num_inchannels[i] |
|
|
|
conv3x3s.append( |
|
|
|
nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
num_inchannels[j], |
|
|
|
num_outchannels_conv3x3, |
|
|
|
3, |
|
|
|
2, |
|
|
|
1, |
|
|
|
bias=False), |
|
|
|
nn.BatchNorm2d( |
|
|
|
num_outchannels_conv3x3, |
|
|
|
momentum=BN_MOMENTUM))) |
|
|
|
else: |
|
|
|
num_outchannels_conv3x3 = num_inchannels[j] |
|
|
|
conv3x3s.append( |
|
|
|
nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
num_inchannels[j], |
|
|
|
num_outchannels_conv3x3, |
|
|
|
3, |
|
|
|
2, |
|
|
|
1, |
|
|
|
bias=False), |
|
|
|
nn.BatchNorm2d( |
|
|
|
num_outchannels_conv3x3, |
|
|
|
momentum=BN_MOMENTUM), nn.ReLU(False))) |
|
|
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
|
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
|
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
|
|
|
|
def get_num_inchannels(self): |
|
|
|
return self.num_inchannels |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
if self.num_branches == 1: |
|
|
|
return [self.branches[0](x[0])] |
|
|
|
|
|
|
|
for i in range(self.num_branches): |
|
|
|
x[i] = self.branches[i](x[i]) |
|
|
|
|
|
|
|
x_fuse = [] |
|
|
|
for i in range(len(self.fuse_layers)): |
|
|
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) |
|
|
|
for j in range(1, self.num_branches): |
|
|
|
if i == j: |
|
|
|
y = y + x[j] |
|
|
|
else: |
|
|
|
y = y + self.fuse_layers[i][j](x[j]) |
|
|
|
x_fuse.append(self.relu(y)) |
|
|
|
|
|
|
|
return x_fuse |
|
|
|
|
|
|
|
|
|
|
|
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} |
|
|
|
|
|
|
|
|
|
|
|
class HighResolutionNet(nn.Module): |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
leaky_relu=False, |
|
|
|
attn_weight=1, |
|
|
|
fix_domain=1, |
|
|
|
domain_center_model='', |
|
|
|
**kwargs): |
|
|
|
super(HighResolutionNet, self).__init__() |
|
|
|
|
|
|
|
self.criterion_attn = torch.nn.MSELoss(reduction='sum') |
|
|
|
self.domain_center_model = domain_center_model |
|
|
|
self.attn_weight = attn_weight |
|
|
|
self.fix_domain = fix_domain |
|
|
|
self.cosine = 1 |
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d( |
|
|
|
3, 64, kernel_size=3, stride=2, padding=1, bias=False) |
|
|
|
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
|
|
self.conv2 = nn.Conv2d( |
|
|
|
64, 64, kernel_size=3, stride=2, padding=1, bias=False) |
|
|
|
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
|
|
num_channels = 64 |
|
|
|
block = blocks_dict['BOTTLENECK'] |
|
|
|
num_blocks = 4 |
|
|
|
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) |
|
|
|
stage1_out_channel = block.expansion * num_channels |
|
|
|
|
|
|
|
# -- stage 2 |
|
|
|
self.stage2_cfg = {} |
|
|
|
self.stage2_cfg['NUM_MODULES'] = 1 |
|
|
|
self.stage2_cfg['NUM_BRANCHES'] = 2 |
|
|
|
self.stage2_cfg['BLOCK'] = 'BASIC' |
|
|
|
self.stage2_cfg['NUM_BLOCKS'] = [4, 4] |
|
|
|
self.stage2_cfg['NUM_CHANNELS'] = [40, 80] |
|
|
|
self.stage2_cfg['FUSE_METHOD'] = 'SUM' |
|
|
|
|
|
|
|
num_channels = self.stage2_cfg['NUM_CHANNELS'] |
|
|
|
block = blocks_dict[self.stage2_cfg['BLOCK']] |
|
|
|
num_channels = [ |
|
|
|
num_channels[i] * block.expansion |
|
|
|
for i in range(len(num_channels)) |
|
|
|
] |
|
|
|
self.transition1 = self._make_transition_layer([stage1_out_channel], |
|
|
|
num_channels) |
|
|
|
self.stage2, pre_stage_channels = self._make_stage( |
|
|
|
self.stage2_cfg, num_channels) |
|
|
|
|
|
|
|
# -- stage 3 |
|
|
|
self.stage3_cfg = {} |
|
|
|
self.stage3_cfg['NUM_MODULES'] = 4 |
|
|
|
self.stage3_cfg['NUM_BRANCHES'] = 3 |
|
|
|
self.stage3_cfg['BLOCK'] = 'BASIC' |
|
|
|
self.stage3_cfg['NUM_BLOCKS'] = [4, 4, 4] |
|
|
|
self.stage3_cfg['NUM_CHANNELS'] = [40, 80, 160] |
|
|
|
self.stage3_cfg['FUSE_METHOD'] = 'SUM' |
|
|
|
|
|
|
|
num_channels = self.stage3_cfg['NUM_CHANNELS'] |
|
|
|
block = blocks_dict[self.stage3_cfg['BLOCK']] |
|
|
|
num_channels = [ |
|
|
|
num_channels[i] * block.expansion |
|
|
|
for i in range(len(num_channels)) |
|
|
|
] |
|
|
|
self.transition2 = self._make_transition_layer(pre_stage_channels, |
|
|
|
num_channels) |
|
|
|
self.stage3, pre_stage_channels = self._make_stage( |
|
|
|
self.stage3_cfg, num_channels) |
|
|
|
last_inp_channels = np.int(np.sum(pre_stage_channels)) + 256 |
|
|
|
self.redc_layer = nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
in_channels=last_inp_channels, |
|
|
|
out_channels=128, |
|
|
|
kernel_size=3, |
|
|
|
stride=1, |
|
|
|
padding=1), |
|
|
|
nn.BatchNorm2d(128, momentum=BN_MOMENTUM), |
|
|
|
nn.ReLU(True), |
|
|
|
) |
|
|
|
|
|
|
|
self.aspp = nn.ModuleList(aspp(in_channel=128)) |
|
|
|
|
|
|
|
# additional layers specfic for Phase 3 |
|
|
|
self.pred_conv = nn.Conv2d(128, 512, 3, padding=1) |
|
|
|
self.pred_bn = nn.BatchNorm2d(512) |
|
|
|
self.GAP = nn.AdaptiveAvgPool2d(1) |
|
|
|
|
|
|
|
# Specially for hidden domain |
|
|
|
# Set the domain for learnable parameters |
|
|
|
domain_center_src = np.load(self.domain_center_model) |
|
|
|
G_SHA = torch.from_numpy(domain_center_src['G_SHA']).view(1, -1, 1, 1) |
|
|
|
G_SHB = torch.from_numpy(domain_center_src['G_SHB']).view(1, -1, 1, 1) |
|
|
|
G_QNRF = torch.from_numpy(domain_center_src['G_QNRF']).view( |
|
|
|
1, -1, 1, 1) |
|
|
|
|
|
|
|
self.n_domain = 3 |
|
|
|
|
|
|
|
self.G_all = torch.cat( |
|
|
|
[G_SHA.clone(), G_SHB.clone(), |
|
|
|
G_QNRF.clone()], dim=0) |
|
|
|
|
|
|
|
self.G_all = nn.Parameter(self.G_all) |
|
|
|
|
|
|
|
self.last_layer = nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
in_channels=128, |
|
|
|
out_channels=64, |
|
|
|
kernel_size=3, |
|
|
|
stride=1, |
|
|
|
padding=1), |
|
|
|
nn.BatchNorm2d(64, momentum=BN_MOMENTUM), |
|
|
|
nn.ReLU(True), |
|
|
|
nn.Conv2d( |
|
|
|
in_channels=64, |
|
|
|
out_channels=32, |
|
|
|
kernel_size=3, |
|
|
|
stride=1, |
|
|
|
padding=1), |
|
|
|
nn.BatchNorm2d(32, momentum=BN_MOMENTUM), |
|
|
|
nn.ReLU(True), |
|
|
|
nn.Conv2d( |
|
|
|
in_channels=32, |
|
|
|
out_channels=1, |
|
|
|
kernel_size=1, |
|
|
|
stride=1, |
|
|
|
padding=0), |
|
|
|
) |
|
|
|
|
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, |
|
|
|
num_channels_cur_layer): |
|
|
|
num_branches_cur = len(num_channels_cur_layer) |
|
|
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
|
|
|
|
transition_layers = [] |
|
|
|
for i in range(num_branches_cur): |
|
|
|
if i < num_branches_pre: |
|
|
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
|
|
transition_layers.append( |
|
|
|
nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
num_channels_pre_layer[i], |
|
|
|
num_channels_cur_layer[i], |
|
|
|
3, |
|
|
|
1, |
|
|
|
1, |
|
|
|
bias=False), |
|
|
|
nn.BatchNorm2d( |
|
|
|
num_channels_cur_layer[i], |
|
|
|
momentum=BN_MOMENTUM), nn.ReLU(inplace=True))) |
|
|
|
else: |
|
|
|
transition_layers.append(None) |
|
|
|
else: |
|
|
|
conv3x3s = [] |
|
|
|
for j in range(i + 1 - num_branches_pre): |
|
|
|
inchannels = num_channels_pre_layer[-1] |
|
|
|
outchannels = num_channels_cur_layer[i] \ |
|
|
|
if j == i - num_branches_pre else inchannels |
|
|
|
conv3x3s.append( |
|
|
|
nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
inchannels, outchannels, 3, 2, 1, bias=False), |
|
|
|
nn.BatchNorm2d(outchannels, momentum=BN_MOMENTUM), |
|
|
|
nn.ReLU(inplace=True))) |
|
|
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
|
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
|
|
|
|
def _make_layer(self, block, inplanes, planes, blocks, stride=1): |
|
|
|
downsample = None |
|
|
|
if stride != 1 or inplanes != planes * block.expansion: |
|
|
|
downsample = nn.Sequential( |
|
|
|
nn.Conv2d( |
|
|
|
inplanes, |
|
|
|
planes * block.expansion, |
|
|
|
kernel_size=1, |
|
|
|
stride=stride, |
|
|
|
bias=False), |
|
|
|
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), |
|
|
|
) |
|
|
|
|
|
|
|
layers = [] |
|
|
|
layers.append(block(inplanes, planes, stride, downsample)) |
|
|
|
inplanes = planes * block.expansion |
|
|
|
for i in range(1, blocks): |
|
|
|
layers.append(block(inplanes, planes)) |
|
|
|
|
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
|
|
def _make_stage(self, |
|
|
|
layer_config, |
|
|
|
num_inchannels, |
|
|
|
multi_scale_output=True): |
|
|
|
num_modules = layer_config['NUM_MODULES'] |
|
|
|
num_branches = layer_config['NUM_BRANCHES'] |
|
|
|
num_blocks = layer_config['NUM_BLOCKS'] |
|
|
|
num_channels = layer_config['NUM_CHANNELS'] |
|
|
|
block = blocks_dict[layer_config['BLOCK']] |
|
|
|
fuse_method = layer_config['FUSE_METHOD'] |
|
|
|
|
|
|
|
modules = [] |
|
|
|
for i in range(num_modules): |
|
|
|
# multi_scale_output is only used last module |
|
|
|
if not multi_scale_output and i == num_modules - 1: |
|
|
|
reset_multi_scale_output = False |
|
|
|
else: |
|
|
|
reset_multi_scale_output = True |
|
|
|
|
|
|
|
modules.append( |
|
|
|
HighResolutionModule(num_branches, block, num_blocks, |
|
|
|
num_inchannels, num_channels, fuse_method, |
|
|
|
reset_multi_scale_output)) |
|
|
|
num_inchannels = modules[-1].get_num_inchannels() |
|
|
|
|
|
|
|
return nn.Sequential(*modules), num_inchannels |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
x = self.conv1(x) |
|
|
|
x = self.bn1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.conv2(x) |
|
|
|
x = self.bn2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.layer1(x) |
|
|
|
x_head_1 = x |
|
|
|
|
|
|
|
x_list = [] |
|
|
|
for i in range(self.stage2_cfg['NUM_BRANCHES']): |
|
|
|
if self.transition1[i] is not None: |
|
|
|
x_list.append(self.transition1[i](x)) |
|
|
|
else: |
|
|
|
x_list.append(x) |
|
|
|
y_list = self.stage2(x_list) |
|
|
|
|
|
|
|
x_list = [] |
|
|
|
for i in range(self.stage3_cfg['NUM_BRANCHES']): |
|
|
|
if self.transition2[i] is not None: |
|
|
|
x_list.append(self.transition2[i](y_list[-1])) |
|
|
|
else: |
|
|
|
x_list.append(y_list[i]) |
|
|
|
|
|
|
|
x = self.stage3(x_list) |
|
|
|
|
|
|
|
# Replace the classification heaeder with custom setting |
|
|
|
# Upsampling |
|
|
|
x0_h, x0_w = x[0].size(2), x[0].size(3) |
|
|
|
x1 = F.interpolate( |
|
|
|
x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=False) |
|
|
|
x2 = F.interpolate( |
|
|
|
x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=False) |
|
|
|
x = torch.cat([x[0], x1, x2, x_head_1], 1) |
|
|
|
# first, reduce the channel down |
|
|
|
x = self.redc_layer(x) |
|
|
|
|
|
|
|
pred_attn = self.GAP(F.relu_(self.pred_bn(self.pred_conv(x)))) |
|
|
|
pred_attn = F.softmax(pred_attn, dim=1) |
|
|
|
pred_attn_list = torch.chunk(pred_attn, 4, dim=1) |
|
|
|
|
|
|
|
aspp_out = [] |
|
|
|
for k, v in enumerate(self.aspp): |
|
|
|
if k % 2 == 0: |
|
|
|
aspp_out.append(self.aspp[k + 1](v(x))) |
|
|
|
else: |
|
|
|
continue |
|
|
|
# Using Aspp add, and relu inside |
|
|
|
for i in range(4): |
|
|
|
x = x + F.relu_(aspp_out[i] * 0.25) * pred_attn_list[i] |
|
|
|
|
|
|
|
bz = x.size(0) |
|
|
|
# -- Besides, we also need to let the prediction attention be close to visable domain |
|
|
|
# -- Calculate the domain distance and get the weights |
|
|
|
# - First, detach domains |
|
|
|
G_all_d = self.G_all.detach() # use detached G_all for calulcating |
|
|
|
pred_attn_d = pred_attn.detach().view(bz, 512, 1, 1) |
|
|
|
|
|
|
|
if self.cosine == 1: |
|
|
|
G_A, G_B, G_Q = torch.chunk(G_all_d, self.n_domain, dim=0) |
|
|
|
|
|
|
|
cos_dis_A = F.cosine_similarity(pred_attn_d, G_A, dim=1).view(-1) |
|
|
|
cos_dis_B = F.cosine_similarity(pred_attn_d, G_B, dim=1).view(-1) |
|
|
|
cos_dis_Q = F.cosine_similarity(pred_attn_d, G_Q, dim=1).view(-1) |
|
|
|
|
|
|
|
cos_dis_all = torch.stack([cos_dis_A, cos_dis_B, |
|
|
|
cos_dis_Q]).view(bz, -1) # bz*3 |
|
|
|
|
|
|
|
cos_dis_all = F.softmax(cos_dis_all, dim=1) |
|
|
|
|
|
|
|
target_attn = cos_dis_all.view(bz, self.n_domain, 1, 1, 1).expand( |
|
|
|
bz, self.n_domain, 512, 1, 1) * self.G_all.view( |
|
|
|
1, self.n_domain, 512, 1, 1).expand( |
|
|
|
bz, self.n_domain, 512, 1, 1) |
|
|
|
target_attn = torch.sum( |
|
|
|
target_attn, dim=1, keepdim=False) # bz * 512 * 1 * 1 |
|
|
|
|
|
|
|
if self.fix_domain: |
|
|
|
target_attn = target_attn.detach() |
|
|
|
|
|
|
|
else: |
|
|
|
raise ValueError('Have not implemented not cosine distance yet') |
|
|
|
|
|
|
|
x = self.last_layer(x) |
|
|
|
x = F.relu_(x) |
|
|
|
|
|
|
|
x = F.interpolate( |
|
|
|
x, size=(x0_h * 2, x0_w * 2), mode='bilinear', align_corners=False) |
|
|
|
|
|
|
|
return x, pred_attn, target_attn |
|
|
|
|
|
|
|
def init_weights( |
|
|
|
self, |
|
|
|
pretrained='', |
|
|
|
): |
|
|
|
logger.info('=> init weights from normal distribution') |
|
|
|
for m in self.modules(): |
|
|
|
if isinstance(m, nn.Conv2d): |
|
|
|
nn.init.normal_(m.weight, std=0.01) |
|
|
|
if m.bias is not None: |
|
|
|
nn.init.constant_(m.bias, 0) |
|
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
|
|
nn.init.constant_(m.weight, 1) |
|
|
|
nn.init.constant_(m.bias, 0) |
|
|
|
if os.path.isfile(pretrained): |
|
|
|
pretrained_dict = torch.load(pretrained) |
|
|
|
logger.info(f'=> loading pretrained model {pretrained}') |
|
|
|
model_dict = self.state_dict() |
|
|
|
pretrained_dict = { |
|
|
|
k: v |
|
|
|
for k, v in pretrained_dict.items() if k in model_dict.keys() |
|
|
|
} |
|
|
|
for k, _ in pretrained_dict.items(): |
|
|
|
logger.info(f'=> loading {k} pretrained model {pretrained}') |
|
|
|
model_dict.update(pretrained_dict) |
|
|
|
self.load_state_dict(model_dict) |
|
|
|
else: |
|
|
|
assert 1 == 2 |
|
|
|
|
|
|
|
|
|
|
|
def aspp(aspp_num=4, aspp_stride=2, in_channel=512, use_bn=True): |
|
|
|
aspp_list = [] |
|
|
|
for i in range(aspp_num): |
|
|
|
pad = (i + 1) * aspp_stride |
|
|
|
dilate = pad |
|
|
|
conv_aspp = nn.Conv2d( |
|
|
|
in_channel, in_channel, 3, padding=pad, dilation=dilate) |
|
|
|
aspp_list.append(conv_aspp) |
|
|
|
if use_bn: |
|
|
|
aspp_list.append(nn.BatchNorm2d(in_channel)) |
|
|
|
|
|
|
|
return aspp_list |