Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10338265master
@@ -1,7 +1,9 @@ | |||
# The code is modified based on BasicSR metrics: | |||
# https://github.com/XPixelGroup/BasicSR/blob/master/basicsr/metrics/psnr_ssim.py | |||
from typing import Dict | |||
import cv2 | |||
import numpy as np | |||
from skimage.metrics import peak_signal_noise_ratio, structural_similarity | |||
from modelscope.metainfo import Metrics | |||
from modelscope.utils.registry import default_group | |||
@@ -34,12 +36,138 @@ class ImageDenoiseMetric(Metric): | |||
def evaluate(self): | |||
psnr_list, ssim_list = [], [] | |||
for (pred, label) in zip(self.preds, self.labels): | |||
psnr_list.append( | |||
peak_signal_noise_ratio(label[0], pred[0], data_range=255)) | |||
ssim_list.append( | |||
structural_similarity( | |||
label[0], pred[0], multichannel=True, data_range=255)) | |||
psnr_list.append(calculate_psnr(label[0], pred[0], crop_border=0)) | |||
ssim_list.append(calculate_ssim(label[0], pred[0], crop_border=0)) | |||
return { | |||
MetricKeys.PSNR: np.mean(psnr_list), | |||
MetricKeys.SSIM: np.mean(ssim_list) | |||
} | |||
def reorder_image(img, input_order='HWC'): | |||
"""Reorder images to 'HWC' order. | |||
If the input_order is (h, w), return (h, w, 1); | |||
If the input_order is (c, h, w), return (h, w, c); | |||
If the input_order is (h, w, c), return as it is. | |||
Args: | |||
img (ndarray): Input image. | |||
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |||
If the input image shape is (h, w), input_order will not have | |||
effects. Default: 'HWC'. | |||
Returns: | |||
ndarray: reordered image. | |||
""" | |||
if input_order not in ['HWC', 'CHW']: | |||
raise ValueError( | |||
f"Wrong input_order {input_order}. Supported input_orders are 'HWC' and 'CHW'" | |||
) | |||
if len(img.shape) == 2: | |||
img = img[..., None] | |||
if input_order == 'CHW': | |||
img = img.transpose(1, 2, 0) | |||
return img | |||
def calculate_psnr(img, img2, crop_border, input_order='HWC', **kwargs): | |||
"""Calculate PSNR (Peak Signal-to-Noise Ratio). | |||
Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio | |||
Args: | |||
img (ndarray): Images with range [0, 255]. | |||
img2 (ndarray): Images with range [0, 255]. | |||
crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation. | |||
input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. | |||
Returns: | |||
float: PSNR result. | |||
""" | |||
assert img.shape == img2.shape, ( | |||
f'Image shapes are different: {img.shape}, {img2.shape}.') | |||
if input_order not in ['HWC', 'CHW']: | |||
raise ValueError( | |||
f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"' | |||
) | |||
img = reorder_image(img, input_order=input_order) | |||
img2 = reorder_image(img2, input_order=input_order) | |||
if crop_border != 0: | |||
img = img[crop_border:-crop_border, crop_border:-crop_border, ...] | |||
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |||
img = img.astype(np.float64) | |||
img2 = img2.astype(np.float64) | |||
mse = np.mean((img - img2)**2) | |||
if mse == 0: | |||
return float('inf') | |||
return 10. * np.log10(255. * 255. / mse) | |||
def calculate_ssim(img, img2, crop_border, input_order='HWC', **kwargs): | |||
"""Calculate SSIM (structural similarity). | |||
``Paper: Image quality assessment: From error visibility to structural similarity`` | |||
The results are the same as that of the official released MATLAB code in | |||
https://ece.uwaterloo.ca/~z70wang/research/ssim/. | |||
For three-channel images, SSIM is calculated for each channel and then | |||
averaged. | |||
Args: | |||
img (ndarray): Images with range [0, 255]. | |||
img2 (ndarray): Images with range [0, 255]. | |||
crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation. | |||
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |||
Default: 'HWC'. | |||
Returns: | |||
float: SSIM result. | |||
""" | |||
assert img.shape == img2.shape, ( | |||
f'Image shapes are different: {img.shape}, {img2.shape}.') | |||
if input_order not in ['HWC', 'CHW']: | |||
raise ValueError( | |||
f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"' | |||
) | |||
img = reorder_image(img, input_order=input_order) | |||
img2 = reorder_image(img2, input_order=input_order) | |||
if crop_border != 0: | |||
img = img[crop_border:-crop_border, crop_border:-crop_border, ...] | |||
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |||
img = img.astype(np.float64) | |||
img2 = img2.astype(np.float64) | |||
ssims = [] | |||
for i in range(img.shape[2]): | |||
ssims.append(_ssim(img[..., i], img2[..., i])) | |||
return np.array(ssims).mean() | |||
def _ssim(img, img2): | |||
"""Calculate SSIM (structural similarity) for one channel images. | |||
It is called by func:`calculate_ssim`. | |||
Args: | |||
img (ndarray): Images with range [0, 255] with order 'HWC'. | |||
img2 (ndarray): Images with range [0, 255] with order 'HWC'. | |||
Returns: | |||
float: SSIM result. | |||
""" | |||
c1 = (0.01 * 255)**2 | |||
c2 = (0.03 * 255)**2 | |||
kernel = cv2.getGaussianKernel(11, 1.5) | |||
window = np.outer(kernel, kernel.transpose()) | |||
mu1 = cv2.filter2D(img, -1, window)[5:-5, | |||
5:-5] # valid mode for window size 11 | |||
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |||
mu1_sq = mu1**2 | |||
mu2_sq = mu2**2 | |||
mu1_mu2 = mu1 * mu2 | |||
sigma1_sq = cv2.filter2D(img**2, -1, window)[5:-5, 5:-5] - mu1_sq | |||
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |||
sigma12 = cv2.filter2D(img * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |||
tmp1 = (2 * mu1_mu2 + c1) * (2 * sigma12 + c2) | |||
tmp2 = (mu1_sq + mu2_sq + c1) * (sigma1_sq + sigma2_sq + c2) | |||
ssim_map = tmp1 / tmp2 | |||
return ssim_map.mean() |
@@ -1,3 +1,8 @@ | |||
# ------------------------------------------------------------------------ | |||
# Modified from https://github.com/megvii-research/NAFNet/blob/main/basicsr/models/archs/NAFNet_arch.py | |||
# Copyright (c) 2022 megvii-model. All Rights Reserved. | |||
# ------------------------------------------------------------------------ | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
@@ -1,3 +1,8 @@ | |||
# ------------------------------------------------------------------------ | |||
# Modified from BasicSR (https://github.com/xinntao/BasicSR) | |||
# Copyright 2018-2020 BasicSR Authors | |||
# ------------------------------------------------------------------------ | |||
import torch | |||
import torch.nn as nn | |||
@@ -1,3 +1,4 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import os | |||
from copy import deepcopy | |||
from typing import Any, Dict, Union | |||
@@ -1,152 +0,0 @@ | |||
# ------------------------------------------------------------------------ | |||
# Modified from BasicSR (https://github.com/xinntao/BasicSR) | |||
# Copyright 2018-2020 BasicSR Authors | |||
# ------------------------------------------------------------------------ | |||
import os | |||
from os import path as osp | |||
import cv2 | |||
import numpy as np | |||
import torch | |||
from .transforms import mod_crop | |||
def img2tensor(imgs, bgr2rgb=True, float32=True): | |||
"""Numpy array to tensor. | |||
Args: | |||
imgs (list[ndarray] | ndarray): Input images. | |||
bgr2rgb (bool): Whether to change bgr to rgb. | |||
float32 (bool): Whether to change to float32. | |||
Returns: | |||
list[tensor] | tensor: Tensor images. If returned results only have | |||
one element, just return tensor. | |||
""" | |||
def _totensor(img, bgr2rgb, float32): | |||
if img.shape[2] == 3 and bgr2rgb: | |||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |||
img = torch.from_numpy(img.transpose(2, 0, 1)) | |||
if float32: | |||
img = img.float() | |||
return img | |||
if isinstance(imgs, list): | |||
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |||
else: | |||
return _totensor(imgs, bgr2rgb, float32) | |||
def scandir(dir_path, keyword=None, recursive=False, full_path=False): | |||
"""Scan a directory to find the interested files. | |||
Args: | |||
dir_path (str): Path of the directory. | |||
keyword (str | tuple(str), optional): File keyword that we are | |||
interested in. Default: None. | |||
recursive (bool, optional): If set to True, recursively scan the | |||
directory. Default: False. | |||
full_path (bool, optional): If set to True, include the dir_path. | |||
Default: False. | |||
Returns: | |||
A generator for all the interested files with relative pathes. | |||
""" | |||
if (keyword is not None) and not isinstance(keyword, (str, tuple)): | |||
raise TypeError('"suffix" must be a string or tuple of strings') | |||
root = dir_path | |||
def _scandir(dir_path, keyword, recursive): | |||
for entry in os.scandir(dir_path): | |||
if not entry.name.startswith('.') and entry.is_file(): | |||
if full_path: | |||
return_path = entry.path | |||
else: | |||
return_path = osp.relpath(entry.path, root) | |||
if keyword is None: | |||
yield return_path | |||
elif keyword in return_path: | |||
yield return_path | |||
else: | |||
if recursive: | |||
yield from _scandir( | |||
entry.path, keyword=keyword, recursive=recursive) | |||
else: | |||
continue | |||
return _scandir(dir_path, keyword=keyword, recursive=recursive) | |||
def padding(img_lq, img_gt, gt_size): | |||
h, w, _ = img_lq.shape | |||
h_pad = max(0, gt_size - h) | |||
w_pad = max(0, gt_size - w) | |||
if h_pad == 0 and w_pad == 0: | |||
return img_lq, img_gt | |||
img_lq = cv2.copyMakeBorder(img_lq, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT) | |||
img_gt = cv2.copyMakeBorder(img_gt, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT) | |||
return img_lq, img_gt | |||
def read_img_seq(path, require_mod_crop=False, scale=1): | |||
"""Read a sequence of images from a given folder path. | |||
Args: | |||
path (list[str] | str): List of image paths or image folder path. | |||
require_mod_crop (bool): Require mod crop for each image. | |||
Default: False. | |||
scale (int): Scale factor for mod_crop. Default: 1. | |||
Returns: | |||
Tensor: size (t, c, h, w), RGB, [0, 1]. | |||
""" | |||
if isinstance(path, list): | |||
img_paths = path | |||
else: | |||
img_paths = sorted(list(scandir(path, full_path=True))) | |||
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths] | |||
if require_mod_crop: | |||
imgs = [mod_crop(img, scale) for img in imgs] | |||
imgs = img2tensor(imgs, bgr2rgb=True, float32=True) | |||
imgs = torch.stack(imgs, dim=0) | |||
return imgs | |||
def paired_paths_from_folder(folders, keys, filename_tmpl): | |||
"""Generate paired paths from folders. | |||
Args: | |||
folders (list[str]): A list of folder path. The order of list should | |||
be [input_folder, gt_folder]. | |||
keys (list[str]): A list of keys identifying folders. The order should | |||
be in consistent with folders, e.g., ['lq', 'gt']. | |||
filename_tmpl (str): Template for each filename. Note that the | |||
template excludes the file extension. Usually the filename_tmpl is | |||
for files in the input folder. | |||
Returns: | |||
list[str]: Returned path list. | |||
""" | |||
assert len(folders) == 2, ( | |||
'The len of folders should be 2 with [input_folder, gt_folder]. ' | |||
f'But got {len(folders)}') | |||
assert len(keys) == 2, ( | |||
'The len of keys should be 2 with [input_key, gt_key]. ' | |||
f'But got {len(keys)}') | |||
input_folder, gt_folder = folders | |||
input_key, gt_key = keys | |||
input_paths = list(scandir(input_folder, keyword='NOISY', recursive=True)) | |||
gt_paths = list(scandir(gt_folder, keyword='GT', recursive=True)) | |||
assert len(input_paths) == len(gt_paths), ( | |||
f'{input_key} and {gt_key} datasets have different number of images: ' | |||
f'{len(input_paths)}, {len(gt_paths)}.') | |||
paths = [] | |||
for idx in range(len(gt_paths)): | |||
gt_path = os.path.join(gt_folder, gt_paths[idx]) | |||
input_path = os.path.join(input_folder, gt_path.replace('GT', 'NOISY')) | |||
paths.append( | |||
dict([(f'{input_key}_path', input_path), | |||
(f'{gt_key}_path', gt_path)])) | |||
return paths |
@@ -1,78 +0,0 @@ | |||
import os | |||
from typing import Callable, List, Optional, Tuple, Union | |||
import cv2 | |||
import numpy as np | |||
from torch.utils import data | |||
from .data_utils import img2tensor, padding, paired_paths_from_folder | |||
from .transforms import augment, paired_random_crop | |||
def default_loader(path): | |||
return cv2.imread(path, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255.0 | |||
class PairedImageDataset(data.Dataset): | |||
"""Paired image dataset for image restoration. | |||
""" | |||
def __init__(self, opt, root, is_train): | |||
super(PairedImageDataset, self).__init__() | |||
self.opt = opt | |||
self.is_train = is_train | |||
self.gt_folder, self.lq_folder = os.path.join( | |||
root, opt.dataroot_gt), os.path.join(root, opt.dataroot_lq) | |||
if opt.filename_tmpl is not None: | |||
self.filename_tmpl = opt.filename_tmpl | |||
else: | |||
self.filename_tmpl = '{}' | |||
self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], | |||
['lq', 'gt'], self.filename_tmpl) | |||
def __getitem__(self, index): | |||
scale = self.opt.scale | |||
# Load gt and lq images. Dimension order: HWC; channel order: BGR; | |||
# image range: [0, 1], float32. | |||
gt_path = self.paths[index]['gt_path'] | |||
img_gt = default_loader(gt_path) | |||
lq_path = self.paths[index]['lq_path'] | |||
img_lq = default_loader(lq_path) | |||
# augmentation for training | |||
# if self.is_train: | |||
gt_size = self.opt.gt_size | |||
# padding | |||
img_gt, img_lq = padding(img_gt, img_lq, gt_size) | |||
# random crop | |||
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale) | |||
# flip, rotation | |||
img_gt, img_lq = augment([img_gt, img_lq], self.opt.use_flip, | |||
self.opt.use_rot) | |||
# BGR to RGB, HWC to CHW, numpy to tensor | |||
img_gt, img_lq = img2tensor([img_gt, img_lq], | |||
bgr2rgb=True, | |||
float32=True) | |||
return { | |||
'input': img_lq, | |||
'target': img_gt, | |||
'input_path': lq_path, | |||
'target_path': gt_path | |||
} | |||
def __len__(self): | |||
return len(self.paths) | |||
def to_torch_dataset( | |||
self, | |||
columns: Union[str, List[str]] = None, | |||
preprocessors: Union[Callable, List[Callable]] = None, | |||
**format_kwargs, | |||
): | |||
return self |
@@ -4,11 +4,11 @@ from typing import TYPE_CHECKING | |||
from modelscope.utils.import_utils import LazyImportModule | |||
if TYPE_CHECKING: | |||
from .image_denoise_dataset import PairedImageDataset | |||
from .sidd_image_denoising_dataset import SiddImageDenoisingDataset | |||
else: | |||
_import_structure = { | |||
'image_denoise_dataset': ['PairedImageDataset'], | |||
'sidd_image_denoising_dataset': ['SiddImageDenoisingDataset'], | |||
} | |||
import sys |
@@ -0,0 +1,46 @@ | |||
# ------------------------------------------------------------------------ | |||
# Modified from BasicSR (https://github.com/xinntao/BasicSR) | |||
# Copyright 2018-2020 BasicSR Authors | |||
# ------------------------------------------------------------------------ | |||
import cv2 | |||
import torch | |||
def img2tensor(imgs, bgr2rgb=True, float32=True): | |||
"""Numpy array to tensor. | |||
Args: | |||
imgs (list[ndarray] | ndarray): Input images. | |||
bgr2rgb (bool): Whether to change bgr to rgb. | |||
float32 (bool): Whether to change to float32. | |||
Returns: | |||
list[tensor] | tensor: Tensor images. If returned results only have | |||
one element, just return tensor. | |||
""" | |||
def _totensor(img, bgr2rgb, float32): | |||
if img.shape[2] == 3 and bgr2rgb: | |||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |||
img = torch.from_numpy(img.transpose(2, 0, 1)) | |||
if float32: | |||
img = img.float() | |||
return img | |||
if isinstance(imgs, list): | |||
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |||
else: | |||
return _totensor(imgs, bgr2rgb, float32) | |||
def padding(img_lq, img_gt, gt_size): | |||
h, w, _ = img_lq.shape | |||
h_pad = max(0, gt_size - h) | |||
w_pad = max(0, gt_size - w) | |||
if h_pad == 0 and w_pad == 0: | |||
return img_lq, img_gt | |||
img_lq = cv2.copyMakeBorder(img_lq, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT) | |||
img_gt = cv2.copyMakeBorder(img_gt, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT) | |||
return img_lq, img_gt |
@@ -0,0 +1,62 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import cv2 | |||
import numpy as np | |||
from modelscope.metainfo import Models | |||
from modelscope.msdatasets.task_datasets.builder import TASK_DATASETS | |||
from modelscope.msdatasets.task_datasets.torch_base_dataset import \ | |||
TorchTaskDataset | |||
from modelscope.utils.constant import Tasks | |||
from .data_utils import img2tensor, padding | |||
from .transforms import augment, paired_random_crop | |||
def default_loader(path): | |||
return cv2.imread(path, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255.0 | |||
@TASK_DATASETS.register_module( | |||
Tasks.image_denoising, module_name=Models.nafnet) | |||
class SiddImageDenoisingDataset(TorchTaskDataset): | |||
"""Paired image dataset for image restoration. | |||
""" | |||
def __init__(self, dataset, opt, is_train): | |||
self.dataset = dataset | |||
self.opt = opt | |||
self.is_train = is_train | |||
def __len__(self): | |||
return len(self.dataset) | |||
def __getitem__(self, index): | |||
# Load gt and lq images. Dimension order: HWC; channel order: BGR; | |||
# image range: [0, 1], float32. | |||
item_dict = self.dataset[index] | |||
gt_path = item_dict['Clean Image:FILE'] | |||
img_gt = default_loader(gt_path) | |||
lq_path = item_dict['Noisy Image:FILE'] | |||
img_lq = default_loader(lq_path) | |||
# augmentation for training | |||
if self.is_train: | |||
gt_size = self.opt.gt_size | |||
# padding | |||
img_gt, img_lq = padding(img_gt, img_lq, gt_size) | |||
# random crop | |||
img_gt, img_lq = paired_random_crop( | |||
img_gt, img_lq, gt_size, scale=1) | |||
# flip, rotation | |||
img_gt, img_lq = augment([img_gt, img_lq], self.opt.use_flip, | |||
self.opt.use_rot) | |||
# BGR to RGB, HWC to CHW, numpy to tensor | |||
img_gt, img_lq = img2tensor([img_gt, img_lq], | |||
bgr2rgb=True, | |||
float32=True) | |||
return {'input': img_lq, 'target': img_gt} |
@@ -105,4 +105,4 @@ class ImageDenoisePipeline(Pipeline): | |||
def postprocess(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||
output_img = (input['output_tensor'].squeeze(0) * 255).cpu().permute( | |||
1, 2, 0).numpy().astype('uint8') | |||
return {OutputKeys.OUTPUT_IMG: output_img} | |||
return {OutputKeys.OUTPUT_IMG: output_img[:, :, ::-1]} |
@@ -2,8 +2,6 @@ | |||
import unittest | |||
from PIL import Image | |||
from modelscope.hub.snapshot_download import snapshot_download | |||
from modelscope.models import Model | |||
from modelscope.outputs import OutputKeys | |||
@@ -20,16 +18,16 @@ class ImageDenoiseTest(unittest.TestCase, DemoCompatibilityCheck): | |||
self.task = Tasks.image_denoising | |||
self.model_id = 'damo/cv_nafnet_image-denoise_sidd' | |||
demo_image_path = 'data/test/images/noisy-demo-1.png' | |||
demo_image_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/noisy-demo-0.png' | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run_by_direct_model_download(self): | |||
cache_path = snapshot_download(self.model_id) | |||
pipeline = ImageDenoisePipeline(cache_path) | |||
pipeline.group_key = self.task | |||
denoise_img = pipeline( | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] | |||
denoise_img = Image.fromarray(denoise_img) | |||
w, h = denoise_img.size | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] # BGR | |||
h, w = denoise_img.shape[:2] | |||
print('pipeline: the shape of output_img is {}x{}'.format(h, w)) | |||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
@@ -37,9 +35,8 @@ class ImageDenoiseTest(unittest.TestCase, DemoCompatibilityCheck): | |||
model = Model.from_pretrained(self.model_id) | |||
pipeline_ins = pipeline(task=Tasks.image_denoising, model=model) | |||
denoise_img = pipeline_ins( | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] | |||
denoise_img = Image.fromarray(denoise_img) | |||
w, h = denoise_img.size | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] # BGR | |||
h, w = denoise_img.shape[:2] | |||
print('pipeline: the shape of output_img is {}x{}'.format(h, w)) | |||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||
@@ -47,18 +44,16 @@ class ImageDenoiseTest(unittest.TestCase, DemoCompatibilityCheck): | |||
pipeline_ins = pipeline( | |||
task=Tasks.image_denoising, model=self.model_id) | |||
denoise_img = pipeline_ins( | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] | |||
denoise_img = Image.fromarray(denoise_img) | |||
w, h = denoise_img.size | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] # BGR | |||
h, w = denoise_img.shape[:2] | |||
print('pipeline: the shape of output_img is {}x{}'.format(h, w)) | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run_with_default_model(self): | |||
pipeline_ins = pipeline(task=Tasks.image_denoising) | |||
denoise_img = pipeline_ins( | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] | |||
denoise_img = Image.fromarray(denoise_img) | |||
w, h = denoise_img.size | |||
input=self.demo_image_path)[OutputKeys.OUTPUT_IMG] # BGR | |||
h, w = denoise_img.shape[:2] | |||
print('pipeline: the shape of output_img is {}x{}'.format(h, w)) | |||
@unittest.skip('demo compatibility test is only enabled on a needed-basis') | |||
@@ -6,10 +6,12 @@ import unittest | |||
from modelscope.hub.snapshot_download import snapshot_download | |||
from modelscope.models.cv.image_denoise import NAFNetForImageDenoise | |||
from modelscope.msdatasets.image_denoise_data import PairedImageDataset | |||
from modelscope.msdatasets import MsDataset | |||
from modelscope.msdatasets.task_datasets.sidd_image_denoising import \ | |||
SiddImageDenoisingDataset | |||
from modelscope.trainers import build_trainer | |||
from modelscope.utils.config import Config | |||
from modelscope.utils.constant import ModelFile | |||
from modelscope.utils.constant import DownloadMode, ModelFile | |||
from modelscope.utils.logger import get_logger | |||
from modelscope.utils.test_utils import test_level | |||
@@ -28,10 +30,20 @@ class ImageDenoiseTrainerTest(unittest.TestCase): | |||
self.cache_path = snapshot_download(self.model_id) | |||
self.config = Config.from_file( | |||
os.path.join(self.cache_path, ModelFile.CONFIGURATION)) | |||
self.dataset_train = PairedImageDataset( | |||
self.config.dataset, self.cache_path, is_train=True) | |||
self.dataset_val = PairedImageDataset( | |||
self.config.dataset, self.cache_path, is_train=False) | |||
dataset_train = MsDataset.load( | |||
'SIDD', | |||
namespace='huizheng', | |||
split='validation', | |||
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS)._hf_ds | |||
dataset_val = MsDataset.load( | |||
'SIDD', | |||
namespace='huizheng', | |||
split='test', | |||
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS)._hf_ds | |||
self.dataset_train = SiddImageDenoisingDataset( | |||
dataset_train, self.config.dataset, is_train=True) | |||
self.dataset_val = SiddImageDenoisingDataset( | |||
dataset_val, self.config.dataset, is_train=False) | |||
def tearDown(self): | |||
shutil.rmtree(self.tmp_dir, ignore_errors=True) | |||