wendi.hwd yingda.chen 3 years ago
parent
commit
8a6c37fd6b
6 changed files with 11 additions and 9 deletions
  1. +2
    -1
      modelscope/models/cv/object_detection/mmdet_model.py
  2. +2
    -2
      modelscope/pipelines/builder.py
  3. +2
    -2
      modelscope/pipelines/cv/__init__.py
  4. +2
    -2
      modelscope/pipelines/cv/image_detection_pipeline.py
  5. +1
    -0
      modelscope/utils/constant.py
  6. +2
    -2
      tests/pipelines/test_object_detection.py

+ 2
- 1
modelscope/models/cv/object_detection/mmdet_model.py View File

@@ -15,7 +15,8 @@ from .mmdet_ms.roi_heads import FCNMaskNHead, Shared4Conv1FCBBoxNHead


@MODELS.register_module(Tasks.human_detection, module_name=Models.detection)
@MODELS.register_module(Tasks.object_detection, module_name=Models.detection)
@MODELS.register_module(
Tasks.image_object_detection, module_name=Models.detection)
class DetectionModel(TorchModel):

def __init__(self, model_dir: str, *args, **kwargs):


+ 2
- 2
modelscope/pipelines/builder.py View File

@@ -37,8 +37,8 @@ DEFAULT_MODEL_FOR_PIPELINE = {
'damo/cv_unet_image-matting'),
Tasks.human_detection: (Pipelines.human_detection,
'damo/cv_resnet18_human-detection'),
Tasks.object_detection: (Pipelines.object_detection,
'damo/cv_vit_object-detection_coco'),
Tasks.image_object_detection: (Pipelines.object_detection,
'damo/cv_vit_object-detection_coco'),
Tasks.image_denoise: (Pipelines.image_denoise,
'damo/cv_nafnet_image-denoise_sidd'),
Tasks.text_classification: (Pipelines.sentiment_analysis,


+ 2
- 2
modelscope/pipelines/cv/__init__.py View File

@@ -7,7 +7,7 @@ if TYPE_CHECKING:
from .action_recognition_pipeline import ActionRecognitionPipeline
from .animal_recognition_pipeline import AnimalRecognitionPipeline
from .cmdssl_video_embedding_pipeline import CMDSSLVideoEmbeddingPipeline
from .object_detection_pipeline import ObjectDetectionPipeline
from .image_detection_pipeline import ImageDetectionPipeline
from .face_detection_pipeline import FaceDetectionPipeline
from .face_recognition_pipeline import FaceRecognitionPipeline
from .face_image_generation_pipeline import FaceImageGenerationPipeline
@@ -33,7 +33,7 @@ else:
'action_recognition_pipeline': ['ActionRecognitionPipeline'],
'animal_recognition_pipeline': ['AnimalRecognitionPipeline'],
'cmdssl_video_embedding_pipeline': ['CMDSSLVideoEmbeddingPipeline'],
'object_detection_pipeline': ['ObjectDetectionPipeline'],
'image_detection_pipeline': ['ImageDetectionPipeline'],
'face_detection_pipeline': ['FaceDetectionPipeline'],
'face_image_generation_pipeline': ['FaceImageGenerationPipeline'],
'face_recognition_pipeline': ['FaceRecognitionPipeline'],


modelscope/pipelines/cv/object_detection_pipeline.py → modelscope/pipelines/cv/image_detection_pipeline.py View File

@@ -14,8 +14,8 @@ from modelscope.utils.logger import get_logger
@PIPELINES.register_module(
Tasks.human_detection, module_name=Pipelines.human_detection)
@PIPELINES.register_module(
Tasks.object_detection, module_name=Pipelines.object_detection)
class ObjectDetectionPipeline(Pipeline):
Tasks.image_object_detection, module_name=Pipelines.object_detection)
class ImageDetectionPipeline(Pipeline):

def __init__(self, model: str, **kwargs):
"""

+ 1
- 0
modelscope/utils/constant.py View File

@@ -20,6 +20,7 @@ class CVTasks(object):
image_classification = 'image-classification'
image_tagging = 'image-tagging'
object_detection = 'object-detection'
image_object_detection = 'image-object-detection'
human_detection = 'human-detection'
image_segmentation = 'image-segmentation'
image_editing = 'image-editing'


+ 2
- 2
tests/pipelines/test_object_detection.py View File

@@ -13,7 +13,7 @@ class ObjectDetectionTest(unittest.TestCase):
def test_object_detection(self):
input_location = 'data/test/images/image_detection.jpg'
model_id = 'damo/cv_vit_object-detection_coco'
object_detect = pipeline(Tasks.object_detection, model=model_id)
object_detect = pipeline(Tasks.image_object_detection, model=model_id)
result = object_detect(input_location)
if result:
print(result)
@@ -23,7 +23,7 @@ class ObjectDetectionTest(unittest.TestCase):
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_object_detection_with_default_task(self):
input_location = 'data/test/images/image_detection.jpg'
object_detect = pipeline(Tasks.object_detection)
object_detect = pipeline(Tasks.image_object_detection)
result = object_detect(input_location)
if result:
print(result)


Loading…
Cancel
Save