Browse Source

Merge branch 'master' into dev_face2d_fixbug

master
寿州 2 years ago
parent
commit
791c950036
27 changed files with 187 additions and 118 deletions
  1. +2
    -3
      modelscope/exporters/torch_model_exporter.py
  2. +28
    -4
      modelscope/hub/api.py
  3. +1
    -0
      modelscope/hub/constants.py
  4. +4
    -2
      modelscope/models/multi_modal/clip/model.py
  5. +3
    -0
      modelscope/models/science/unifold/modules/__init__.py
  6. +2
    -0
      modelscope/msdatasets/ms_dataset.py
  7. +1
    -10
      modelscope/outputs/outputs.py
  8. +2
    -3
      modelscope/pipelines/builder.py
  9. +2
    -2
      modelscope/pipelines/nlp/token_classification_pipeline.py
  10. +3
    -3
      modelscope/pipelines/nlp/word_segmentation_pipeline.py
  11. +0
    -1
      modelscope/preprocessors/multi_modal.py
  12. +12
    -5
      modelscope/preprocessors/nlp/nlp_base.py
  13. +82
    -69
      modelscope/preprocessors/nlp/token_classification_preprocessor.py
  14. +6
    -5
      modelscope/preprocessors/ofa/ocr_recognition.py
  15. +1
    -1
      modelscope/trainers/nlp/text_generation_trainer.py
  16. +4
    -2
      modelscope/trainers/nlp_trainer.py
  17. +1
    -1
      modelscope/trainers/trainer.py
  18. +8
    -0
      modelscope/utils/constant.py
  19. +2
    -1
      requirements/framework.txt
  20. +2
    -0
      requirements/multi-modal.txt
  21. +2
    -0
      requirements/science.txt
  22. +6
    -2
      tests/msdatasets/test_dataset_upload.py
  23. +2
    -1
      tests/outputs/test_model_outputs.py
  24. +8
    -0
      tests/pipelines/test_named_entity_recognition.py
  25. +1
    -1
      tests/pipelines/test_unifold.py
  26. +1
    -1
      tests/trainers/test_finetune_token_classificatin.py
  27. +1
    -1
      tests/trainers/test_ofa_trainer.py

+ 2
- 3
modelscope/exporters/torch_model_exporter.py View File

@@ -128,7 +128,7 @@ class TorchModelExporter(Exporter):
args_list = list(args)
else:
args_list = [args]
if isinstance(args_list[-1], dict):
if isinstance(args_list[-1], Mapping):
args_dict = args_list[-1]
args_list = args_list[:-1]
n_nonkeyword = len(args_list)
@@ -284,9 +284,8 @@ class TorchModelExporter(Exporter):
'Model property dummy_inputs must be set.')
dummy_inputs = collate_fn(dummy_inputs, device)
if isinstance(dummy_inputs, Mapping):
dummy_inputs = self._decide_input_format(model, dummy_inputs)
dummy_inputs_filter = []
for _input in dummy_inputs:
for _input in self._decide_input_format(model, dummy_inputs):
if _input is not None:
dummy_inputs_filter.append(_input)
else:


+ 28
- 4
modelscope/hub/api.py View File

@@ -23,7 +23,8 @@ from modelscope.hub.constants import (API_RESPONSE_FIELD_DATA,
API_RESPONSE_FIELD_MESSAGE,
API_RESPONSE_FIELD_USERNAME,
DEFAULT_CREDENTIALS_PATH,
MODELSCOPE_ENVIRONMENT, ONE_YEAR_SECONDS,
MODELSCOPE_ENVIRONMENT,
MODELSCOPE_USERNAME, ONE_YEAR_SECONDS,
Licenses, ModelVisibility)
from modelscope.hub.errors import (InvalidParameter, NotExistError,
NotLoginException, NoValidRevisionError,
@@ -38,8 +39,8 @@ from modelscope.utils.constant import (DEFAULT_DATASET_REVISION,
DEFAULT_MODEL_REVISION,
DEFAULT_REPOSITORY_REVISION,
MASTER_MODEL_BRANCH, DatasetFormations,
DatasetMetaFormats, DownloadMode,
ModelFile)
DatasetMetaFormats, DownloadChannel,
DownloadMode, ModelFile)
from modelscope.utils.logger import get_logger
from .utils.utils import (get_endpoint, get_release_datetime,
model_id_to_group_owner_name)
@@ -645,6 +646,25 @@ class HubApi:
def check_local_cookies(self, use_cookies) -> CookieJar:
return self._check_cookie(use_cookies=use_cookies)

def dataset_download_uv(self, dataset_name: str, namespace: str):
if not dataset_name or not namespace:
raise ValueError('dataset_name or namespace cannot be empty!')

# get channel and user_name
channel = DownloadChannel.LOCAL.value
user_name = ''
if MODELSCOPE_ENVIRONMENT in os.environ:
channel = os.environ[MODELSCOPE_ENVIRONMENT]
if MODELSCOPE_USERNAME in os.environ:
user_name = os.environ[MODELSCOPE_USERNAME]

url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/download/uv/{channel}?user={user_name}'
cookies = ModelScopeConfig.get_cookies()
r = requests.post(url, cookies=cookies, headers=self.headers)
resp = r.json()
raise_on_error(resp)
return resp['Message']


class ModelScopeConfig:
path_credential = expanduser(DEFAULT_CREDENTIALS_PATH)
@@ -760,14 +780,18 @@ class ModelScopeConfig:
env = 'custom'
if MODELSCOPE_ENVIRONMENT in os.environ:
env = os.environ[MODELSCOPE_ENVIRONMENT]
user_name = 'unknown'
if MODELSCOPE_USERNAME in os.environ:
user_name = os.environ[MODELSCOPE_USERNAME]

ua = 'modelscope/%s; python/%s; session_id/%s; platform/%s; processor/%s; env/%s' % (
ua = 'modelscope/%s; python/%s; session_id/%s; platform/%s; processor/%s; env/%s; user/%s' % (
__version__,
platform.python_version(),
ModelScopeConfig.get_user_session_id(),
platform.platform(),
platform.processor(),
env,
user_name,
)
if isinstance(user_agent, dict):
ua = '; '.join(f'{k}/{v}' for k, v in user_agent.items())


+ 1
- 0
modelscope/hub/constants.py View File

@@ -18,6 +18,7 @@ API_RESPONSE_FIELD_EMAIL = 'Email'
API_RESPONSE_FIELD_MESSAGE = 'Message'
MODELSCOPE_ENVIRONMENT = 'MODELSCOPE_ENVIRONMENT'
MODELSCOPE_SDK_DEBUG = 'MODELSCOPE_SDK_DEBUG'
MODELSCOPE_USERNAME = 'MODELSCOPE_USERNAME'
ONE_YEAR_SECONDS = 24 * 365 * 60 * 60




+ 4
- 2
modelscope/models/multi_modal/clip/model.py View File

@@ -349,11 +349,13 @@ class CLIP(nn.Module):
text_num_hidden_layers: int,
text_type_vocab_size: int,
tokenizer: FullTokenizer,
# vision_head_width, added this param for ViT-H
vision_head_width: int = 64,
):
super().__init__()

if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
vision_heads = vision_width * 32 // vision_head_width
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
@@ -361,7 +363,7 @@ class CLIP(nn.Module):
input_resolution=image_resolution,
width=vision_width)
else:
vision_heads = vision_width // 64
vision_heads = vision_width // vision_head_width
self.visual = VisualTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,


+ 3
- 0
modelscope/models/science/unifold/modules/__init__.py View File

@@ -0,0 +1,3 @@
# The Uni-fold implementation is also open-sourced by the authors under Apache-2.0 license,
# and is publicly available at https://github.com/dptech-corp/Uni-Fold.
"""Unifold Modules."""

+ 2
- 0
modelscope/msdatasets/ms_dataset.py View File

@@ -274,6 +274,8 @@ class MsDataset:
try:
api.on_dataset_download(
dataset_name=download_dataset, namespace=namespace)
api.dataset_download_uv(
dataset_name=download_dataset, namespace=namespace)
except Exception as e:
logger.error(e)



+ 1
- 10
modelscope/outputs/outputs.py View File

@@ -491,17 +491,8 @@ TASK_OUTPUTS = {
# word segmentation result for single sample
# {
# "output": "今天 天气 不错 , 适合 出去 游玩"
# "labels": [
# {'word': '今天', 'label': 'PROPN'},
# {'word': '天气', 'label': 'PROPN'},
# {'word': '不错', 'label': 'VERB'},
# {'word': ',', 'label': 'NUM'},
# {'word': '适合', 'label': 'NOUN'},
# {'word': '出去', 'label': 'PART'},
# {'word': '游玩', 'label': 'ADV'},
# ]
# }
Tasks.word_segmentation: [OutputKeys.OUTPUT, OutputKeys.LABELS],
Tasks.word_segmentation: [OutputKeys.OUTPUT],

# TODO @wenmeng.zwm support list of result check
# named entity recognition result for single sample


+ 2
- 3
modelscope/pipelines/builder.py View File

@@ -93,9 +93,8 @@ DEFAULT_MODEL_FOR_PIPELINE = {
'damo/cv_resnet50_live-category'),
Tasks.video_category: (Pipelines.video_category,
'damo/cv_resnet50_video-category'),
Tasks.multi_modal_embedding:
(Pipelines.multi_modal_embedding,
'damo/multi-modal_clip-vit-large-patch14_zh'),
Tasks.multi_modal_embedding: (Pipelines.multi_modal_embedding,
'damo/multi-modal_clip-vit-base-patch16_zh'),
Tasks.generative_multi_modal_embedding:
(Pipelines.generative_multi_modal_embedding,
'damo/multi-modal_gemm-vit-large-patch14_generative-multi-modal-embedding'


+ 2
- 2
modelscope/pipelines/nlp/token_classification_pipeline.py View File

@@ -109,13 +109,13 @@ class TokenClassificationPipeline(Pipeline):
chunk['span'] = text[chunk['start']:chunk['end']]
chunks.append(chunk)

# for cws output
# for cws outputs
if len(chunks) > 0 and chunks[0]['type'] == 'cws':
spans = [
chunk['span'] for chunk in chunks if chunk['span'].strip()
]
seg_result = ' '.join(spans)
outputs = {OutputKeys.OUTPUT: seg_result, OutputKeys.LABELS: []}
outputs = {OutputKeys.OUTPUT: seg_result}

# for ner outputs
else:


+ 3
- 3
modelscope/pipelines/nlp/word_segmentation_pipeline.py View File

@@ -115,15 +115,15 @@ class WordSegmentationPipeline(Pipeline):
chunk['span'] = text[chunk['start']:chunk['end']]
chunks.append(chunk)

# for cws output
# for cws outputs
if len(chunks) > 0 and chunks[0]['type'] == 'cws':
spans = [
chunk['span'] for chunk in chunks if chunk['span'].strip()
]
seg_result = ' '.join(spans)
outputs = {OutputKeys.OUTPUT: seg_result, OutputKeys.LABELS: []}
outputs = {OutputKeys.OUTPUT: seg_result}

# for ner outpus
# for ner output
else:
outputs = {OutputKeys.OUTPUT: chunks}
return outputs

+ 0
- 1
modelscope/preprocessors/multi_modal.py View File

@@ -96,7 +96,6 @@ class OfaPreprocessor(Preprocessor):
data = input
else:
data = self._build_dict(input)
data = self._ofa_input_compatibility_conversion(data)
sample = self.preprocess(data)
str_data = dict()
for k, v in data.items():


+ 12
- 5
modelscope/preprocessors/nlp/nlp_base.py View File

@@ -34,6 +34,7 @@ class NLPBasePreprocessor(Preprocessor, ABC):
label=None,
label2id=None,
mode=ModeKeys.INFERENCE,
use_fast=None,
**kwargs):
"""The NLP preprocessor base class.

@@ -45,14 +46,18 @@ class NLPBasePreprocessor(Preprocessor, ABC):
label2id: An optional label2id mapping, the class will try to call utils.parse_label_mapping
if this mapping is not supplied.
mode: Run this preprocessor in either 'train'/'eval'/'inference' mode
use_fast: use the fast version of tokenizer

"""
self.model_dir = model_dir
self.first_sequence = first_sequence
self.second_sequence = second_sequence
self.label = label

self.use_fast = kwargs.pop('use_fast', None)
if self.use_fast is None and os.path.isfile(
self.use_fast = use_fast
if self.use_fast is None and model_dir is None:
self.use_fast = False
elif self.use_fast is None and os.path.isfile(
os.path.join(model_dir, 'tokenizer_config.json')):
with open(os.path.join(model_dir, 'tokenizer_config.json'),
'r') as f:
@@ -61,8 +66,8 @@ class NLPBasePreprocessor(Preprocessor, ABC):
self.use_fast = False if self.use_fast is None else self.use_fast

self.label2id = label2id
if self.label2id is None:
self.label2id = parse_label_mapping(self.model_dir)
if self.label2id is None and model_dir is not None:
self.label2id = parse_label_mapping(model_dir)
super().__init__(mode, **kwargs)

@property
@@ -106,6 +111,7 @@ class NLPTokenizerPreprocessorBase(NLPBasePreprocessor):
label: str = 'label',
label2id: dict = None,
mode: str = ModeKeys.INFERENCE,
use_fast: bool = None,
**kwargs):
"""The NLP tokenizer preprocessor base class.

@@ -122,11 +128,12 @@ class NLPTokenizerPreprocessorBase(NLPBasePreprocessor):
- config.json label2id/id2label
- label_mapping.json
mode: Run this preprocessor in either 'train'/'eval'/'inference' mode, the behavior may be different.
use_fast: use the fast version of tokenizer
kwargs: These kwargs will be directly fed into the tokenizer.
"""

super().__init__(model_dir, first_sequence, second_sequence, label,
label2id, mode)
label2id, mode, use_fast, **kwargs)
self.model_dir = model_dir
self.tokenize_kwargs = kwargs
self.tokenizer = self.build_tokenizer(model_dir)


+ 82
- 69
modelscope/preprocessors/nlp/token_classification_preprocessor.py View File

@@ -2,6 +2,7 @@

from typing import Any, Dict, Tuple, Union

import numpy as np
import torch

from modelscope.metainfo import Preprocessors
@@ -20,9 +21,7 @@ class WordSegmentationBlankSetToLabelPreprocessor(NLPBasePreprocessor):
"""

def __init__(self, **kwargs):
super().__init__(**kwargs)
self.first_sequence: str = kwargs.pop('first_sequence',
'first_sequence')
self.first_sequence: str = kwargs.pop('first_sequence', 'tokens')
self.label = kwargs.pop('label', OutputKeys.LABELS)

def __call__(self, data: str) -> Union[Dict[str, Any], Tuple]:
@@ -80,10 +79,9 @@ class TokenClassificationPreprocessor(NLPTokenizerPreprocessorBase):
'is_split_into_words', False)
if 'label2id' in kwargs:
kwargs.pop('label2id')
self.tokenize_kwargs = kwargs

@type_assert(object, str)
def __call__(self, data: str) -> Dict[str, Any]:
@type_assert(object, (str, dict))
def __call__(self, data: Union[dict, str]) -> Dict[str, Any]:
"""process the raw input data

Args:
@@ -99,18 +97,24 @@ class TokenClassificationPreprocessor(NLPTokenizerPreprocessorBase):
text = None
labels_list = None
if isinstance(data, str):
# for inference inputs without label
text = data
self.tokenize_kwargs['add_special_tokens'] = False
elif isinstance(data, dict):
# for finetune inputs with label
text = data.get(self.first_sequence)
labels_list = data.get(self.label)
if isinstance(text, list):
self.tokenize_kwargs['is_split_into_words'] = True

input_ids = []
label_mask = []
offset_mapping = []
if self.is_split_into_words:
for offset, token in enumerate(list(data)):
subtoken_ids = self.tokenizer.encode(
token, add_special_tokens=False)
token_type_ids = []
if self.is_split_into_words and self._mode == ModeKeys.INFERENCE:
for offset, token in enumerate(list(text)):
subtoken_ids = self.tokenizer.encode(token,
**self.tokenize_kwargs)
if len(subtoken_ids) == 0:
subtoken_ids = [self.tokenizer.unk_token_id]
input_ids.extend(subtoken_ids)
@@ -119,10 +123,9 @@ class TokenClassificationPreprocessor(NLPTokenizerPreprocessorBase):
else:
if self.tokenizer.is_fast:
encodings = self.tokenizer(
text,
add_special_tokens=False,
return_offsets_mapping=True,
**self.tokenize_kwargs)
text, return_offsets_mapping=True, **self.tokenize_kwargs)
attention_mask = encodings['attention_mask']
token_type_ids = encodings['token_type_ids']
input_ids = encodings['input_ids']
word_ids = encodings.word_ids()
for i in range(len(word_ids)):
@@ -137,75 +140,85 @@ class TokenClassificationPreprocessor(NLPTokenizerPreprocessorBase):
label_mask.append(1)
offset_mapping.append(encodings['offset_mapping'][i])
else:
encodings = self.tokenizer(
text, add_special_tokens=False, **self.tokenize_kwargs)
encodings = self.tokenizer(text, **self.tokenize_kwargs)
input_ids = encodings['input_ids']
label_mask, offset_mapping = self.get_label_mask_and_offset_mapping(
text)

if len(input_ids) >= self.sequence_length - 2:
input_ids = input_ids[:self.sequence_length - 2]
label_mask = label_mask[:self.sequence_length - 2]
input_ids = [self.tokenizer.cls_token_id
] + input_ids + [self.tokenizer.sep_token_id]
label_mask = [0] + label_mask + [0]
attention_mask = [1] * len(input_ids)
offset_mapping = offset_mapping[:sum(label_mask)]
if self._mode == ModeKeys.INFERENCE:
if len(input_ids) >= self.sequence_length - 2:
input_ids = input_ids[:self.sequence_length - 2]
label_mask = label_mask[:self.sequence_length - 2]
input_ids = [self.tokenizer.cls_token_id
] + input_ids + [self.tokenizer.sep_token_id]
label_mask = [0] + label_mask + [0]
attention_mask = [1] * len(input_ids)
offset_mapping = offset_mapping[:sum(label_mask)]

if not self.is_transformer_based_model:
input_ids = input_ids[1:-1]
attention_mask = attention_mask[1:-1]
label_mask = label_mask[1:-1]
if not self.is_transformer_based_model:
input_ids = input_ids[1:-1]
attention_mask = attention_mask[1:-1]
label_mask = label_mask[1:-1]

if self._mode == ModeKeys.INFERENCE:
input_ids = torch.tensor(input_ids).unsqueeze(0)
attention_mask = torch.tensor(attention_mask).unsqueeze(0)
label_mask = torch.tensor(
label_mask, dtype=torch.bool).unsqueeze(0)

# the token classification
output = {
'text': text,
'input_ids': input_ids,
'attention_mask': attention_mask,
'label_mask': label_mask,
'offset_mapping': offset_mapping
}

# align the labels with tokenized text
if labels_list is not None:
assert self.label2id is not None
# Map that sends B-Xxx label to its I-Xxx counterpart
b_to_i_label = []
label_enumerate_values = [
k for k, v in sorted(
self.label2id.items(), key=lambda item: item[1])
]
for idx, label in enumerate(label_enumerate_values):
if label.startswith('B-') and label.replace(
'B-', 'I-') in label_enumerate_values:
b_to_i_label.append(
label_enumerate_values.index(
label.replace('B-', 'I-')))
else:
b_to_i_label.append(idx)
# the token classification
output = {
'text': text,
'input_ids': input_ids,
'attention_mask': attention_mask,
'label_mask': label_mask,
'offset_mapping': offset_mapping
}
else:
output = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
'label_mask': label_mask,
}

label_row = [self.label2id[lb] for lb in labels_list]
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
if word_idx is None:
label_ids.append(-100)
elif word_idx != previous_word_idx:
label_ids.append(label_row[word_idx])
else:
if self.label_all_tokens:
label_ids.append(b_to_i_label[label_row[word_idx]])
# align the labels with tokenized text
if labels_list is not None:
assert self.label2id is not None
# Map that sends B-Xxx label to its I-Xxx counterpart
b_to_i_label = []
label_enumerate_values = [
k for k, v in sorted(
self.label2id.items(), key=lambda item: item[1])
]
for idx, label in enumerate(label_enumerate_values):
if label.startswith('B-') and label.replace(
'B-', 'I-') in label_enumerate_values:
b_to_i_label.append(
label_enumerate_values.index(
label.replace('B-', 'I-')))
else:
b_to_i_label.append(idx)

label_row = [self.label2id[lb] for lb in labels_list]
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
if word_idx is None:
label_ids.append(-100)
previous_word_idx = word_idx
labels = label_ids
output['labels'] = labels
elif word_idx != previous_word_idx:
label_ids.append(label_row[word_idx])
else:
if self.label_all_tokens:
label_ids.append(b_to_i_label[label_row[word_idx]])
else:
label_ids.append(-100)
previous_word_idx = word_idx
labels = label_ids
output['labels'] = labels
output = {
k: np.array(v) if isinstance(v, list) else v
for k, v in output.items()
}
return output

def get_tokenizer_class(self):


+ 6
- 5
modelscope/preprocessors/ofa/ocr_recognition.py View File

@@ -2,12 +2,12 @@
from typing import Any, Dict

import torch
from PIL import Image
import unicodedata2
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms import functional as F
from zhconv import convert

from modelscope.preprocessors.image import load_image
from modelscope.utils.constant import ModeKeys
from .base import OfaBasePreprocessor

@@ -98,8 +98,7 @@ class OfaOcrRecognitionPreprocessor(OfaBasePreprocessor):

def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, Any]:
sample = self._build_infer_sample(data)
target = data[self.column_map['text']]
target = target.translate(self.transtab).strip()
target = sample['label']
target_token_list = target.strip().split()
target = ' '.join(target_token_list[:self.max_tgt_length])
sample['target'] = self.tokenize_text(target, add_bos=False)
@@ -119,5 +118,7 @@ class OfaOcrRecognitionPreprocessor(OfaBasePreprocessor):
'patch_mask': torch.tensor([True])
}
if 'text' in self.column_map and self.column_map['text'] in data:
sample['label'] = data[self.column_map['text']]
target = data[self.column_map['text']]
target = unicodedata2.normalize('NFKC', convert(target, 'zh-hans'))
sample['label'] = target
return sample

+ 1
- 1
modelscope/trainers/nlp/text_generation_trainer.py View File

@@ -18,7 +18,7 @@ class TextGenerationTrainer(NlpEpochBasedTrainer):
return tokenizer.decode(tokens.tolist(), skip_special_tokens=True)

def evaluation_step(self, data):
model = self.model
model = self.model.module if self._dist else self.model
model.eval()

with torch.no_grad():


+ 4
- 2
modelscope/trainers/nlp_trainer.py View File

@@ -586,14 +586,16 @@ class NlpEpochBasedTrainer(EpochBasedTrainer):
preprocessor_mode=ModeKeys.TRAIN,
**model_args,
**self.train_keys,
mode=ModeKeys.TRAIN)
mode=ModeKeys.TRAIN,
use_fast=True)
eval_preprocessor = Preprocessor.from_pretrained(
self.model_dir,
cfg_dict=self.cfg,
preprocessor_mode=ModeKeys.EVAL,
**model_args,
**self.eval_keys,
mode=ModeKeys.EVAL)
mode=ModeKeys.EVAL,
use_fast=True)
return train_preprocessor, eval_preprocessor




+ 1
- 1
modelscope/trainers/trainer.py View File

@@ -876,7 +876,7 @@ class EpochBasedTrainer(BaseTrainer):
Subclass and override to inject custom behavior.

"""
model = self.model
model = self.model.module if self._dist else self.model
model.eval()

if is_parallel(model):


+ 8
- 0
modelscope/utils/constant.py View File

@@ -238,6 +238,14 @@ class DownloadMode(enum.Enum):
FORCE_REDOWNLOAD = 'force_redownload'


class DownloadChannel(enum.Enum):
""" Channels of datasets downloading for uv/pv counting.
"""
LOCAL = 'local'
DSW = 'dsw'
EAIS = 'eais'


class UploadMode(enum.Enum):
""" How to upload object to remote.
"""


+ 2
- 1
requirements/framework.txt View File

@@ -1,6 +1,7 @@
addict
attrs
datasets
# version beyond 2.5.2 introduces compatbility issue and is being resolved
datasets<=2.5.2
easydict
einops
filelock>=3.3.0


+ 2
- 0
requirements/multi-modal.txt View File

@@ -11,3 +11,5 @@ timm
tokenizers
torchvision
transformers>=4.12.0
unicodedata2
zhconv

+ 2
- 0
requirements/science.txt View File

@@ -1,4 +1,6 @@
biopython
iopath
ipdb
lmdb
ml_collections
scipy


+ 6
- 2
tests/msdatasets/test_dataset_upload.py View File

@@ -8,7 +8,8 @@ import zipfile
from modelscope.msdatasets import MsDataset
from modelscope.msdatasets.utils.dataset_utils import list_dataset_objects
from modelscope.utils import logger as logging
from modelscope.utils.constant import DEFAULT_DATASET_REVISION, ModelFile
from modelscope.utils.constant import (DEFAULT_DATASET_REVISION, DownloadMode,
ModelFile)
from modelscope.utils.test_utils import test_level

logger = logging.get_logger(__name__)
@@ -104,7 +105,10 @@ class DatasetUploadTest(unittest.TestCase):

@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_ds_download_dir(self):
test_ds = MsDataset.load(self.dataset_name, self.namespace)
test_ds = MsDataset.load(
self.dataset_name,
namespace=self.namespace,
download_mode=DownloadMode.FORCE_REDOWNLOAD)
assert test_ds.config_kwargs['split_config'].values()

@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')


+ 2
- 1
tests/outputs/test_model_outputs.py View File

@@ -21,9 +21,10 @@ class TestModelOutput(unittest.TestCase):
self.assertEqual(outputs['logits'], torch.Tensor([1]))
self.assertEqual(outputs[0], torch.Tensor([1]))
self.assertEqual(outputs.logits, torch.Tensor([1]))
outputs.loss = torch.Tensor([2])
logits, loss = outputs
self.assertEqual(logits, torch.Tensor([1]))
self.assertTrue(loss is None)
self.assertTrue(loss is not None)


if __name__ == '__main__':


+ 8
- 0
tests/pipelines/test_named_entity_recognition.py View File

@@ -19,9 +19,11 @@ class NamedEntityRecognitionTest(unittest.TestCase, DemoCompatibilityCheck):
self.task = Tasks.named_entity_recognition
self.model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'

english_model_id = 'damo/nlp_raner_named-entity-recognition_english-large-ecom'
tcrf_model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
lcrf_model_id = 'damo/nlp_lstm_named-entity-recognition_chinese-news'
sentence = '这与温岭市新河镇的一个神秘的传说有关。'
sentence_en = 'pizza shovel'

@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_tcrf_by_direct_model_download(self):
@@ -89,6 +91,12 @@ class NamedEntityRecognitionTest(unittest.TestCase, DemoCompatibilityCheck):
task=Tasks.named_entity_recognition, model=self.lcrf_model_id)
print(pipeline_ins(input=self.sentence))

@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_english_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition, model=self.english_model_id)
print(pipeline_ins(input='pizza shovel'))

@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.named_entity_recognition)


+ 1
- 1
tests/pipelines/test_unifold.py View File

@@ -19,7 +19,7 @@ class UnifoldProteinStructureTest(unittest.TestCase, DemoCompatibilityCheck):
self.protein_multimer = 'GAMGLPEEPSSPQESTLKALSLYEAHLSSYIMYLQTFLVKTKQKVNNKNYPEFTLFDTSKLKKDQTLKSIKT' + \
'NIAALKNHIDKIKPIAMQIYKKYSKNIP'

@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_by_direct_model_download(self):
model_dir = snapshot_download(self.model_id)
mono_pipeline_ins = pipeline(task=self.task, model=model_dir)


+ 1
- 1
tests/trainers/test_finetune_token_classificatin.py View File

@@ -87,7 +87,7 @@ class TestFinetuneTokenClassification(unittest.TestCase):
cfg['dataset'] = {
'train': {
'labels': label_enumerate_values,
'first_sequence': 'first_sequence',
'first_sequence': 'tokens',
'label': 'labels',
}
}


+ 1
- 1
tests/trainers/test_ofa_trainer.py View File

@@ -85,7 +85,7 @@ class TestOfaTrainer(unittest.TestCase):
'ocr_fudanvi_zh',
subset_name='scene',
namespace='modelscope',
split='train[:200]',
split='train[800:900]',
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS),
eval_dataset=MsDataset.load(
'ocr_fudanvi_zh',


Loading…
Cancel
Save