diff --git a/configs/nlp/sbert_sentence_similarity.json b/configs/nlp/sbert_sentence_similarity.json index 2d8eafdd..dc37687b 100644 --- a/configs/nlp/sbert_sentence_similarity.json +++ b/configs/nlp/sbert_sentence_similarity.json @@ -6,25 +6,34 @@ "second_sequence": "sentence2" }, "model": { - "type": "structbert", - "attention_probs_dropout_prob": 0.1, - "easynlp_version": "0.0.3", - "gradient_checkpointing": false, - "hidden_act": "gelu", - "hidden_dropout_prob": 0.1, - "hidden_size": 768, - "initializer_range": 0.02, - "intermediate_size": 3072, - "layer_norm_eps": 1e-12, - "max_position_embeddings": 512, - "num_attention_heads": 12, - "num_hidden_layers": 12, - "pad_token_id": 0, - "position_embedding_type": "absolute", - "transformers_version": "4.6.0.dev0", - "type_vocab_size": 2, - "use_cache": true, - "vocab_size": 30522 + "type": "text-classification", + "backbone": { + "type": "structbert", + "prefix": "encoder", + "attention_probs_dropout_prob": 0.1, + "easynlp_version": "0.0.3", + "gradient_checkpointing": false, + "hidden_act": "gelu", + "hidden_dropout_prob": 0.1, + "hidden_size": 768, + "initializer_range": 0.02, + "intermediate_size": 3072, + "layer_norm_eps": 1e-12, + "max_position_embeddings": 512, + "num_attention_heads": 12, + "num_hidden_layers": 12, + "pad_token_id": 0, + "position_embedding_type": "absolute", + "transformers_version": "4.6.0.dev0", + "type_vocab_size": 2, + "use_cache": true, + "vocab_size": 21128 + }, + "head": { + "type": "text-classification", + "hidden_dropout_prob": 0.1, + "hidden_size": 768 + } }, "pipeline": { "type": "sentence-similarity" diff --git a/configs/nlp/sequence_classification_trainer.yaml b/configs/nlp/sequence_classification_trainer.yaml index 62f6f75f..0dd16b91 100644 --- a/configs/nlp/sequence_classification_trainer.yaml +++ b/configs/nlp/sequence_classification_trainer.yaml @@ -6,6 +6,9 @@ task: text-classification model: path: bert-base-sst2 + backbone: + type: bert + prefix: bert attention_probs_dropout_prob: 0.1 bos_token_id: 0 eos_token_id: 2 diff --git a/modelscope/metainfo.py b/modelscope/metainfo.py index a3e93296..3cb10d65 100644 --- a/modelscope/metainfo.py +++ b/modelscope/metainfo.py @@ -33,6 +33,16 @@ class Models(object): imagen = 'imagen-text-to-image-synthesis' +class TaskModels(object): + # nlp task + text_classification = 'text-classification' + + +class Heads(object): + # nlp heads + text_classification = 'text-classification' + + class Pipelines(object): """ Names for different pipelines. diff --git a/modelscope/metrics/builder.py b/modelscope/metrics/builder.py index 860a3295..1738b464 100644 --- a/modelscope/metrics/builder.py +++ b/modelscope/metrics/builder.py @@ -17,6 +17,7 @@ class MetricKeys(object): task_default_metrics = { Tasks.sentence_similarity: [Metrics.seq_cls_metric], + Tasks.sentiment_classification: [Metrics.seq_cls_metric], Tasks.text_generation: [Metrics.text_gen_metric], } diff --git a/modelscope/models/__init__.py b/modelscope/models/__init__.py index 4767657a..bc24eef6 100644 --- a/modelscope/models/__init__.py +++ b/modelscope/models/__init__.py @@ -29,6 +29,8 @@ try: SbertForZeroShotClassification, SpaceForDialogIntent, SpaceForDialogModeling, SpaceForDialogStateTracking, StructBertForMaskedLM, VecoForMaskedLM) + from .nlp.heads import (SequenceClassificationHead) + from .nlp.backbones import (SbertModel) except ModuleNotFoundError as e: if str(e) == "No module named 'pytorch'": pass diff --git a/modelscope/models/base/__init__.py b/modelscope/models/base/__init__.py new file mode 100644 index 00000000..ab7901af --- /dev/null +++ b/modelscope/models/base/__init__.py @@ -0,0 +1,4 @@ +from .base_head import * # noqa F403 +from .base_model import * # noqa F403 +from .base_torch_head import * # noqa F403 +from .base_torch_model import * # noqa F403 diff --git a/modelscope/models/base/base_head.py b/modelscope/models/base/base_head.py new file mode 100644 index 00000000..eb977f5c --- /dev/null +++ b/modelscope/models/base/base_head.py @@ -0,0 +1,48 @@ +# Copyright (c) Alibaba, Inc. and its affiliates. +from abc import ABC, abstractmethod +from typing import Dict, List, Union + +import numpy as np + +from ...utils.config import ConfigDict +from ...utils.logger import get_logger +from .base_model import Model + +logger = get_logger() + +Tensor = Union['torch.Tensor', 'tf.Tensor'] +Input = Union[Dict[str, Tensor], Model] + + +class Head(ABC): + """ + The head base class is for the tasks head method definition + + """ + + def __init__(self, **kwargs): + self.config = ConfigDict(kwargs) + + @abstractmethod + def forward(self, input: Input) -> Dict[str, Tensor]: + """ + This method will use the output from backbone model to do any + downstream tasks + Args: + input: The tensor output or a model from backbone model + (text generation need a model as input) + Returns: The output from downstream taks + """ + pass + + @abstractmethod + def compute_loss(self, outputs: Dict[str, Tensor], + labels) -> Dict[str, Tensor]: + """ + compute loss for head during the finetuning + + Args: + outputs (Dict[str, Tensor]): the output from the model forward + Returns: the loss(Dict[str, Tensor]): + """ + pass diff --git a/modelscope/models/base.py b/modelscope/models/base/base_model.py similarity index 79% rename from modelscope/models/base.py rename to modelscope/models/base/base_model.py index 96bba51a..ffd9867e 100644 --- a/modelscope/models/base.py +++ b/modelscope/models/base/base_model.py @@ -4,6 +4,8 @@ import os.path as osp from abc import ABC, abstractmethod from typing import Dict, Optional, Union +import numpy as np + from modelscope.hub.snapshot_download import snapshot_download from modelscope.models.builder import build_model from modelscope.utils.config import Config @@ -25,6 +27,15 @@ class Model(ABC): @abstractmethod def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: + """ + Run the forward pass for a model. + + Args: + input (Dict[str, Tensor]): the dict of the model inputs for the forward method + + Returns: + Dict[str, Tensor]: output from the model forward pass + """ pass def postprocess(self, input: Dict[str, Tensor], @@ -41,6 +52,15 @@ class Model(ABC): """ return input + @classmethod + def _instantiate(cls, **kwargs): + """ Define the instantiation method of a model,default method is by + calling the constructor. Note that in the case of no loading model + process in constructor of a task model, a load_model method is + added, and thus this method is overloaded + """ + return cls(**kwargs) + @classmethod def from_pretrained(cls, model_name_or_path: str, @@ -71,6 +91,7 @@ class Model(ABC): cfg, 'pipeline'), 'pipeline config is missing from config file.' pipeline_cfg = cfg.pipeline # TODO @wenmeng.zwm may should manually initialize model after model building + if hasattr(model_cfg, 'model_type') and not hasattr(model_cfg, 'type'): model_cfg.type = model_cfg.model_type @@ -78,7 +99,8 @@ class Model(ABC): for k, v in kwargs.items(): model_cfg[k] = v - model = build_model(model_cfg, task_name) + model = build_model( + model_cfg, task_name=task_name, default_args=kwargs) # dynamically add pipeline info to model for pipeline inference model.pipeline = pipeline_cfg diff --git a/modelscope/models/base/base_torch_head.py b/modelscope/models/base/base_torch_head.py new file mode 100644 index 00000000..5c769f3a --- /dev/null +++ b/modelscope/models/base/base_torch_head.py @@ -0,0 +1,30 @@ +# Copyright (c) Alibaba, Inc. and its affiliates. +import os.path +import re +from typing import Dict, Optional, Union + +import torch +from torch import nn + +from ...utils.logger import get_logger +from .base_head import Head + +logger = get_logger(__name__) + + +class TorchHead(Head, torch.nn.Module): + """ Base head interface for pytorch + + """ + + def __init__(self, **kwargs): + super().__init__(**kwargs) + torch.nn.Module.__init__(self) + + def forward(self, inputs: Dict[str, + torch.Tensor]) -> Dict[str, torch.Tensor]: + raise NotImplementedError + + def compute_loss(self, outputs: Dict[str, torch.Tensor], + labels) -> Dict[str, torch.Tensor]: + raise NotImplementedError diff --git a/modelscope/models/base/base_torch_model.py b/modelscope/models/base/base_torch_model.py new file mode 100644 index 00000000..0c202a5c --- /dev/null +++ b/modelscope/models/base/base_torch_model.py @@ -0,0 +1,55 @@ +# Copyright (c) Alibaba, Inc. and its affiliates. + +from typing import Any, Dict, Optional, Union + +import torch +from torch import nn + +from ...utils.logger import get_logger +from .base_model import Model + +logger = get_logger(__name__) + + +class TorchModel(Model, torch.nn.Module): + """ Base model interface for pytorch + + """ + + def __init__(self, model_dir=None, *args, **kwargs): + super().__init__(model_dir, *args, **kwargs) + torch.nn.Module.__init__(self) + + def forward(self, inputs: Dict[str, + torch.Tensor]) -> Dict[str, torch.Tensor]: + raise NotImplementedError + + def post_init(self): + """ + A method executed at the end of each model initialization, to execute code that needs the model's + modules properly initialized (such as weight initialization). + """ + self.init_weights() + + def init_weights(self): + # Initialize weights + self.apply(self._init_weights) + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=0.02) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=0.02) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def compute_loss(self, outputs: Dict[str, Any], labels): + raise NotImplementedError() diff --git a/modelscope/models/base_torch.py b/modelscope/models/base_torch.py deleted file mode 100644 index 10899221..00000000 --- a/modelscope/models/base_torch.py +++ /dev/null @@ -1,23 +0,0 @@ -# Copyright (c) Alibaba, Inc. and its affiliates. - -from typing import Dict - -import torch - -from .base import Model - - -class TorchModel(Model, torch.nn.Module): - """ Base model interface for pytorch - - """ - - def __init__(self, model_dir=None, *args, **kwargs): - # init reference: https://stackoverflow.com/questions\ - # /9575409/calling-parent-class-init-with-multiple-inheritance-whats-the-right-way - super().__init__(model_dir) - super(Model, self).__init__() - - def forward(self, inputs: Dict[str, - torch.Tensor]) -> Dict[str, torch.Tensor]: - raise NotImplementedError diff --git a/modelscope/models/builder.py b/modelscope/models/builder.py index b6df8c90..33f111a8 100644 --- a/modelscope/models/builder.py +++ b/modelscope/models/builder.py @@ -1,9 +1,11 @@ # Copyright (c) Alibaba, Inc. and its affiliates. from modelscope.utils.config import ConfigDict -from modelscope.utils.registry import Registry, build_from_cfg +from modelscope.utils.registry import TYPE_NAME, Registry, build_from_cfg MODELS = Registry('models') +BACKBONES = Registry('backbones') +HEADS = Registry('heads') def build_model(cfg: ConfigDict, @@ -19,3 +21,29 @@ def build_model(cfg: ConfigDict, """ return build_from_cfg( cfg, MODELS, group_key=task_name, default_args=default_args) + + +def build_backbone(cfg: ConfigDict, + field: str = None, + default_args: dict = None): + """ build backbone given backbone config dict + + Args: + cfg (:obj:`ConfigDict`): config dict for backbone object. + field (str, optional): field, such as CV, NLP's backbone + default_args (dict, optional): Default initialization arguments. + """ + return build_from_cfg( + cfg, BACKBONES, group_key=field, default_args=default_args) + + +def build_head(cfg: ConfigDict, default_args: dict = None): + """ build head given config dict + + Args: + cfg (:obj:`ConfigDict`): config dict for head object. + default_args (dict, optional): Default initialization arguments. + """ + + return build_from_cfg( + cfg, HEADS, group_key=cfg[TYPE_NAME], default_args=default_args) diff --git a/modelscope/models/nlp/__init__.py b/modelscope/models/nlp/__init__.py index 5a6855e9..b36f2708 100644 --- a/modelscope/models/nlp/__init__.py +++ b/modelscope/models/nlp/__init__.py @@ -1,6 +1,8 @@ # Copyright (c) Alibaba, Inc. and its affiliates. -from modelscope.utils.error import TENSORFLOW_IMPORT_WARNING +from ...utils.error import TENSORFLOW_IMPORT_WARNING +from .backbones import * # noqa F403 from .bert_for_sequence_classification import * # noqa F403 +from .heads import * # noqa F403 from .masked_language import * # noqa F403 from .nncrf_for_named_entity_recognition import * # noqa F403 from .palm_for_text_generation import * # noqa F403 @@ -9,9 +11,10 @@ from .sbert_for_sentence_similarity import * # noqa F403 from .sbert_for_sentiment_classification import * # noqa F403 from .sbert_for_token_classification import * # noqa F403 from .sbert_for_zero_shot_classification import * # noqa F403 -from .space.dialog_intent_prediction_model import * # noqa F403 -from .space.dialog_modeling_model import * # noqa F403 -from .space.dialog_state_tracking_model import * # noqa F403 +from .sequence_classification import * # noqa F403 +from .space_for_dialog_intent_prediction import * # noqa F403 +from .space_for_dialog_modeling import * # noqa F403 +from .space_for_dialog_state_tracking import * # noqa F403 try: from .csanmt_for_translation import CsanmtForTranslation diff --git a/modelscope/models/nlp/backbones/__init__.py b/modelscope/models/nlp/backbones/__init__.py new file mode 100644 index 00000000..0cae5ab3 --- /dev/null +++ b/modelscope/models/nlp/backbones/__init__.py @@ -0,0 +1,4 @@ +from .space import SpaceGenerator, SpaceModelBase +from .structbert import SbertModel + +__all__ = ['SbertModel', 'SpaceGenerator', 'SpaceModelBase'] diff --git a/modelscope/models/nlp/backbones/space/__init__.py b/modelscope/models/nlp/backbones/space/__init__.py new file mode 100644 index 00000000..a2be83ef --- /dev/null +++ b/modelscope/models/nlp/backbones/space/__init__.py @@ -0,0 +1,2 @@ +from .model.generator import Generator as SpaceGenerator +from .model.model_base import SpaceModelBase diff --git a/modelscope/models/nlp/space/model/__init__.py b/modelscope/models/nlp/backbones/space/model/__init__.py similarity index 100% rename from modelscope/models/nlp/space/model/__init__.py rename to modelscope/models/nlp/backbones/space/model/__init__.py diff --git a/modelscope/models/nlp/space/model/gen_unified_transformer.py b/modelscope/models/nlp/backbones/space/model/gen_unified_transformer.py similarity index 100% rename from modelscope/models/nlp/space/model/gen_unified_transformer.py rename to modelscope/models/nlp/backbones/space/model/gen_unified_transformer.py diff --git a/modelscope/models/nlp/space/model/generator.py b/modelscope/models/nlp/backbones/space/model/generator.py similarity index 100% rename from modelscope/models/nlp/space/model/generator.py rename to modelscope/models/nlp/backbones/space/model/generator.py diff --git a/modelscope/models/nlp/space/model/intent_unified_transformer.py b/modelscope/models/nlp/backbones/space/model/intent_unified_transformer.py similarity index 99% rename from modelscope/models/nlp/space/model/intent_unified_transformer.py rename to modelscope/models/nlp/backbones/space/model/intent_unified_transformer.py index cae96479..8d08e7ad 100644 --- a/modelscope/models/nlp/space/model/intent_unified_transformer.py +++ b/modelscope/models/nlp/backbones/space/model/intent_unified_transformer.py @@ -4,7 +4,7 @@ import torch import torch.nn as nn import torch.nn.functional as F -from .....utils.nlp.space.criterions import compute_kl_loss +from ......utils.nlp.space.criterions import compute_kl_loss from .unified_transformer import UnifiedTransformer diff --git a/modelscope/models/nlp/space/model/model_base.py b/modelscope/models/nlp/backbones/space/model/model_base.py similarity index 98% rename from modelscope/models/nlp/space/model/model_base.py rename to modelscope/models/nlp/backbones/space/model/model_base.py index 7e0a6b0b..c0c2da95 100644 --- a/modelscope/models/nlp/space/model/model_base.py +++ b/modelscope/models/nlp/backbones/space/model/model_base.py @@ -4,7 +4,7 @@ import os import torch.nn as nn -from .....utils.constant import ModelFile +from ......utils.constant import ModelFile class SpaceModelBase(nn.Module): diff --git a/modelscope/models/nlp/space/model/unified_transformer.py b/modelscope/models/nlp/backbones/space/model/unified_transformer.py similarity index 100% rename from modelscope/models/nlp/space/model/unified_transformer.py rename to modelscope/models/nlp/backbones/space/model/unified_transformer.py diff --git a/modelscope/models/nlp/space/__init__.py b/modelscope/models/nlp/backbones/space/modules/__init__.py similarity index 100% rename from modelscope/models/nlp/space/__init__.py rename to modelscope/models/nlp/backbones/space/modules/__init__.py diff --git a/modelscope/models/nlp/space/modules/embedder.py b/modelscope/models/nlp/backbones/space/modules/embedder.py similarity index 100% rename from modelscope/models/nlp/space/modules/embedder.py rename to modelscope/models/nlp/backbones/space/modules/embedder.py diff --git a/modelscope/models/nlp/space/modules/feedforward.py b/modelscope/models/nlp/backbones/space/modules/feedforward.py similarity index 100% rename from modelscope/models/nlp/space/modules/feedforward.py rename to modelscope/models/nlp/backbones/space/modules/feedforward.py diff --git a/modelscope/models/nlp/space/modules/functions.py b/modelscope/models/nlp/backbones/space/modules/functions.py similarity index 100% rename from modelscope/models/nlp/space/modules/functions.py rename to modelscope/models/nlp/backbones/space/modules/functions.py diff --git a/modelscope/models/nlp/space/modules/multihead_attention.py b/modelscope/models/nlp/backbones/space/modules/multihead_attention.py similarity index 100% rename from modelscope/models/nlp/space/modules/multihead_attention.py rename to modelscope/models/nlp/backbones/space/modules/multihead_attention.py diff --git a/modelscope/models/nlp/space/modules/transformer_block.py b/modelscope/models/nlp/backbones/space/modules/transformer_block.py similarity index 100% rename from modelscope/models/nlp/space/modules/transformer_block.py rename to modelscope/models/nlp/backbones/space/modules/transformer_block.py diff --git a/modelscope/models/nlp/backbones/structbert/__init__.py b/modelscope/models/nlp/backbones/structbert/__init__.py new file mode 100644 index 00000000..7db035d8 --- /dev/null +++ b/modelscope/models/nlp/backbones/structbert/__init__.py @@ -0,0 +1 @@ +from .modeling_sbert import SbertModel diff --git a/modelscope/models/nlp/backbones/structbert/adv_utils.py b/modelscope/models/nlp/backbones/structbert/adv_utils.py new file mode 100644 index 00000000..8e2bd0bf --- /dev/null +++ b/modelscope/models/nlp/backbones/structbert/adv_utils.py @@ -0,0 +1,166 @@ +# Copyright 2021-2022 The Alibaba DAMO NLP Team Authors. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +from torch import nn + +from .....utils.logger import get_logger + +logger = get_logger(__name__) + + +def _symmetric_kl_div(logits1, logits2, attention_mask=None): + """ + Calclate two logits' the KL div value symmetrically. + :param logits1: The first logit. + :param logits2: The second logit. + :param attention_mask: An optional attention_mask which is used to mask some element out. + This is usually useful in token_classification tasks. + If the shape of logits is [N1, N2, ... Nn, D], the shape of attention_mask should be [N1, N2, ... Nn] + :return: The mean loss. + """ + labels_num = logits1.shape[-1] + KLDiv = nn.KLDivLoss(reduction='none') + loss = torch.sum( + KLDiv(nn.LogSoftmax(dim=-1)(logits1), + nn.Softmax(dim=-1)(logits2)), + dim=-1) + torch.sum( + KLDiv(nn.LogSoftmax(dim=-1)(logits2), + nn.Softmax(dim=-1)(logits1)), + dim=-1) + if attention_mask is not None: + loss = torch.sum( + loss * attention_mask) / torch.sum(attention_mask) / labels_num + else: + loss = torch.mean(loss) / labels_num + return loss + + +def compute_adv_loss(embedding, + model, + ori_logits, + ori_loss, + adv_grad_factor, + adv_bound=None, + sigma=5e-6, + **kwargs): + """ + Calculate the adv loss of the model. + :param embedding: Original sentense embedding + :param model: The model or the forward function(including decoder/classifier), accept kwargs as input, output logits + :param ori_logits: The original logits outputed from the model function + :param ori_loss: The original loss + :param adv_grad_factor: This factor will be multipled by the KL loss grad and then the result will be added to + the original embedding. + More details please check:https://arxiv.org/abs/1908.04577 + The range of this value always be 1e-3~1e-7 + :param adv_bound: adv_bound is used to cut the top and the bottom bound of the produced embedding. + If not proveded, 2 * sigma will be used as the adv_bound factor + :param sigma: The std factor used to produce a 0 mean normal distribution. + If adv_bound not proveded, 2 * sigma will be used as the adv_bound factor + :param kwargs: the input param used in model function + :return: The original loss adds the adv loss + """ + adv_bound = adv_bound if adv_bound is not None else 2 * sigma + embedding_1 = embedding + embedding.data.new(embedding.size()).normal_( + 0, sigma) # 95% in +- 1e-5 + kwargs.pop('input_ids') + if 'inputs_embeds' in kwargs: + kwargs.pop('inputs_embeds') + with_attention_mask = False if 'with_attention_mask' not in kwargs else kwargs[ + 'with_attention_mask'] + attention_mask = kwargs['attention_mask'] + if not with_attention_mask: + attention_mask = None + if 'with_attention_mask' in kwargs: + kwargs.pop('with_attention_mask') + outputs = model(**kwargs, inputs_embeds=embedding_1) + v1_logits = outputs.logits + loss = _symmetric_kl_div(ori_logits, v1_logits, attention_mask) + emb_grad = torch.autograd.grad(loss, embedding_1)[0].data + emb_grad_norm = emb_grad.norm( + dim=2, keepdim=True, p=float('inf')).max( + 1, keepdim=True)[0] + is_nan = torch.any(torch.isnan(emb_grad_norm)) + if is_nan: + logger.warning('Nan occured when calculating adv loss.') + return ori_loss + emb_grad = emb_grad / emb_grad_norm + embedding_2 = embedding_1 + adv_grad_factor * emb_grad + embedding_2 = torch.max(embedding_1 - adv_bound, embedding_2) + embedding_2 = torch.min(embedding_1 + adv_bound, embedding_2) + outputs = model(**kwargs, inputs_embeds=embedding_2) + adv_logits = outputs.logits + adv_loss = _symmetric_kl_div(ori_logits, adv_logits, attention_mask) + return ori_loss + adv_loss + + +def compute_adv_loss_pair(embedding, + model, + start_logits, + end_logits, + ori_loss, + adv_grad_factor, + adv_bound=None, + sigma=5e-6, + **kwargs): + """ + Calculate the adv loss of the model. This function is used in the pair logits scenerio. + :param embedding: Original sentense embedding + :param model: The model or the forward function(including decoder/classifier), accept kwargs as input, output logits + :param start_logits: The original start logits outputed from the model function + :param end_logits: The original end logits outputed from the model function + :param ori_loss: The original loss + :param adv_grad_factor: This factor will be multipled by the KL loss grad and then the result will be added to + the original embedding. + More details please check:https://arxiv.org/abs/1908.04577 + The range of this value always be 1e-3~1e-7 + :param adv_bound: adv_bound is used to cut the top and the bottom bound of the produced embedding. + If not proveded, 2 * sigma will be used as the adv_bound factor + :param sigma: The std factor used to produce a 0 mean normal distribution. + If adv_bound not proveded, 2 * sigma will be used as the adv_bound factor + :param kwargs: the input param used in model function + :return: The original loss adds the adv loss + """ + adv_bound = adv_bound if adv_bound is not None else 2 * sigma + embedding_1 = embedding + embedding.data.new(embedding.size()).normal_( + 0, sigma) # 95% in +- 1e-5 + kwargs.pop('input_ids') + if 'inputs_embeds' in kwargs: + kwargs.pop('inputs_embeds') + outputs = model(**kwargs, inputs_embeds=embedding_1) + v1_logits_start, v1_logits_end = outputs.logits + loss = _symmetric_kl_div(start_logits, + v1_logits_start) + _symmetric_kl_div( + end_logits, v1_logits_end) + loss = loss / 2 + emb_grad = torch.autograd.grad(loss, embedding_1)[0].data + emb_grad_norm = emb_grad.norm( + dim=2, keepdim=True, p=float('inf')).max( + 1, keepdim=True)[0] + is_nan = torch.any(torch.isnan(emb_grad_norm)) + if is_nan: + logger.warning('Nan occured when calculating pair adv loss.') + return ori_loss + emb_grad = emb_grad / emb_grad_norm + embedding_2 = embedding_1 + adv_grad_factor * emb_grad + embedding_2 = torch.max(embedding_1 - adv_bound, embedding_2) + embedding_2 = torch.min(embedding_1 + adv_bound, embedding_2) + outputs = model(**kwargs, inputs_embeds=embedding_2) + adv_logits_start, adv_logits_end = outputs.logits + adv_loss = _symmetric_kl_div(start_logits, + adv_logits_start) + _symmetric_kl_div( + end_logits, adv_logits_end) + return ori_loss + adv_loss diff --git a/modelscope/models/nlp/backbones/structbert/configuration_sbert.py b/modelscope/models/nlp/backbones/structbert/configuration_sbert.py new file mode 100644 index 00000000..e8605091 --- /dev/null +++ b/modelscope/models/nlp/backbones/structbert/configuration_sbert.py @@ -0,0 +1,131 @@ +# Copyright 2021-2022 The Alibaba DAMO NLP Team Authors. +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" SBERT model configuration, mainly copied from :class:`~transformers.BertConfig` """ +from transformers import PretrainedConfig + +from .....utils import logger as logging + +logger = logging.get_logger(__name__) + + +class SbertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a :class:`~sofa.models.SbertModel`. + It is used to instantiate a SBERT model according to the specified arguments. + + Configuration objects inherit from :class:`~sofa.utils.PretrainedConfig` and can be used to control the model + outputs. Read the documentation from :class:`~sofa.utils.PretrainedConfig` for more information. + + + Args: + vocab_size (:obj:`int`, `optional`, defaults to 30522): + Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the + :obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or + :class:`~transformers.TFBertModel`. + hidden_size (:obj:`int`, `optional`, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (:obj:`int`, `optional`, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (:obj:`int`, `optional`, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (:obj:`int`, `optional`, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, + :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. + hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (:obj:`int`, `optional`, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (:obj:`int`, `optional`, defaults to 2): + The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or + :class:`~transformers.TFBertModel`. + initializer_range (:obj:`float`, `optional`, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): + Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, + :obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on + :obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) + `__. For more information on :obj:`"relative_key_query"`, please refer to + `Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) + `__. + use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if ``config.is_decoder=True``. + classifier_dropout (:obj:`float`, `optional`): + The dropout ratio for the classification head. + adv_grad_factor (:obj:`float`, `optional`): This factor will be multipled by the KL loss grad and then + the result will be added to the original embedding. + More details please check:https://arxiv.org/abs/1908.04577 + The range of this value always be 1e-3~1e-7 + adv_bound (:obj:`float`, `optional`): adv_bound is used to cut the top and the bottom bound of + the produced embedding. + If not proveded, 2 * sigma will be used as the adv_bound factor + sigma (:obj:`float`, `optional`): The std factor used to produce a 0 mean normal distribution. + If adv_bound not proveded, 2 * sigma will be used as the adv_bound factor + """ + + model_type = 'sbert' + + def __init__(self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act='gelu', + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + position_embedding_type='absolute', + use_cache=True, + classifier_dropout=None, + **kwargs): + super().__init__(**kwargs) + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.classifier_dropout = classifier_dropout + # adv_grad_factor, used in adv loss. + # Users can check adv_utils.py for details. + # if adv_grad_factor set to None, no adv loss will not applied to the model. + self.adv_grad_factor = 5e-5 if 'adv_grad_factor' not in kwargs else kwargs[ + 'adv_grad_factor'] + # sigma value, used in adv loss. + self.sigma = 5e-6 if 'sigma' not in kwargs else kwargs['sigma'] + # adv_bound value, used in adv loss. + self.adv_bound = 2 * self.sigma if 'adv_bound' not in kwargs else kwargs[ + 'adv_bound'] diff --git a/modelscope/models/nlp/backbones/structbert/modeling_sbert.py b/modelscope/models/nlp/backbones/structbert/modeling_sbert.py new file mode 100644 index 00000000..1b3cc218 --- /dev/null +++ b/modelscope/models/nlp/backbones/structbert/modeling_sbert.py @@ -0,0 +1,815 @@ +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from packaging import version +from torch import nn +from transformers import PreTrainedModel +from transformers.activations import ACT2FN +from transformers.modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, ModelOutput) +from transformers.modeling_utils import (apply_chunking_to_forward, + find_pruneable_heads_and_indices, + prune_linear_layer) + +from .....metainfo import Models +from .....utils.constant import Fields +from .....utils.logger import get_logger +from ....base import TorchModel +from ....builder import BACKBONES +from .configuration_sbert import SbertConfig + +logger = get_logger(__name__) + + +@BACKBONES.register_module(Fields.nlp, module_name=Models.structbert) +class SbertModel(TorchModel, PreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in `Attention is + all you need `__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration + set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` + argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an + input to the forward pass. + """ + + def __init__(self, model_dir=None, add_pooling_layer=True, **config): + """ + Args: + model_dir (str, optional): The model checkpoint directory. Defaults to None. + add_pooling_layer (bool, optional): to decide if pool the output from hidden layer. Defaults to True. + """ + config = SbertConfig(**config) + super().__init__(model_dir) + self.config = config + + self.embeddings = SbertEmbeddings(config) + self.encoder = SbertEncoder(config) + + self.pooler = SbertPooler(config) if add_pooling_layer else None + self.init_weights() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def forward(self, + input_ids=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + **kwargs): + r""" + encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)` + , `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` + with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, + sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` + (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` + instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. + use_cache (:obj:`bool`, `optional`): + If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up + decoding (see :obj:`past_key_values`). + """ + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else + self.config.output_hidden_states) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError( + 'You cannot specify both input_ids and inputs_embeds at the same time' + ) + elif input_ids is not None: + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError( + 'You have to specify either input_ids or inputs_embeds') + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[ + 2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones( + ((batch_size, seq_length + past_key_values_length)), + device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, 'token_type_ids'): + buffered_token_type_ids = self.embeddings.token_type_ids[:, : + seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand( + batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros( + input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( + attention_mask, input_shape, device) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size( + ) + encoder_hidden_shape = (encoder_batch_size, + encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones( + encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask( + encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, + self.config.num_hidden_layers) + + embedding_output, orignal_embeds = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + return_inputs_embeds=True, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler( + sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, + pooled_output) + encoder_outputs[1:] + (orignal_embeds, ) + + return BaseModelOutputWithPoolingAndCrossAttentionsWithEmbedding( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + embedding_output=orignal_embeds) + + def extract_sequence_outputs(self, outputs): + return outputs['last_hidden_state'] + + def extract_pooled_outputs(self, outputs): + return outputs['pooler_output'] + + +class SbertEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding( + config.vocab_size, + config.hidden_size, + padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, + config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, + config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm( + config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, + 'position_embedding_type', + 'absolute') + self.register_buffer( + 'position_ids', + torch.arange(config.max_position_embeddings).expand((1, -1))) + if version.parse(torch.__version__) > version.parse('1.6.0'): + self.register_buffer( + 'token_type_ids', + torch.zeros( + self.position_ids.size(), + dtype=torch.long, + device=self.position_ids.device), + persistent=False, + ) + + def forward(self, + input_ids=None, + token_type_ids=None, + position_ids=None, + inputs_embeds=None, + past_key_values_length=0, + return_inputs_embeds=False): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, + past_key_values_length:seq_length + + past_key_values_length] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids + # issue #5664 + if token_type_ids is None: + if hasattr(self, 'token_type_ids'): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand( + input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros( + input_shape, + dtype=torch.long, + device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == 'absolute': + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + if not return_inputs_embeds: + return embeddings + else: + return embeddings, inputs_embeds + + +class SbertSelfAttention(nn.Module): + + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr( + config, 'embedding_size'): + raise ValueError( + f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention ' + f'heads ({config.num_attention_heads})') + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size + / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr(config, + 'position_embedding_type', + 'absolute') + if self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query': + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding( + 2 * config.max_position_embeddings - 1, + self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, + self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores( + self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores( + self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, + key_layer.transpose(-1, -2)) + + if self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query': + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange( + seq_length, dtype=torch.long, + device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange( + seq_length, dtype=torch.long, + device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding( + distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to( + dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == 'relative_key': + relative_position_scores = torch.einsum( + 'bhld,lrd->bhlr', query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == 'relative_key_query': + relative_position_scores_query = torch.einsum( + 'bhld,lrd->bhlr', query_layer, positional_embedding) + relative_position_scores_key = torch.einsum( + 'bhrd,lrd->bhlr', key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt( + self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in SbertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + ( + self.all_head_size, ) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, + attention_probs) if output_attentions else (context_layer, ) + + if self.is_decoder: + outputs = outputs + (past_key_value, ) + return outputs + + +class SbertSelfOutput(nn.Module): + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm( + config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class SbertAttention(nn.Module): + + def __init__(self, config): + super().__init__() + self.self = SbertSelfAttention(config) + self.output = SbertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, + self.self.attention_head_size, self.pruned_heads) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len( + heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output, + ) + self_outputs[1:] # add attentions if we output them + return outputs + + +class SbertIntermediate(nn.Module): + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class SbertOutput(nn.Module): + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm( + config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class SbertLayer(nn.Module): + + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = SbertAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError( + f'{self} should be used as a decoder model if cross attention is added' + ) + self.crossattention = SbertAttention(config) + self.intermediate = SbertIntermediate(config) + self.output = SbertOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[: + 2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[ + 1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, 'crossattention'): + raise ValueError( + f'If `encoder_hidden_states` are passed, {self} has to be instantiated' + f'with cross-attention layers by setting `config.add_cross_attention=True`' + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[ + -2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[ + 1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward(self.feed_forward_chunk, + self.chunk_size_feed_forward, + self.seq_len_dim, + attention_output) + outputs = (layer_output, ) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value, ) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class SbertEncoder(nn.Module): + + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList( + [SbertLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = ( + ) if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states, ) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[ + i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + + if use_cache: + logger.warning( + '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...' + ) + use_cache = False + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs, past_key_value, + output_attentions) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(layer_module), + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1], ) + if output_attentions: + all_self_attentions = all_self_attentions + ( + layer_outputs[1], ) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + ( + layer_outputs[2], ) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states, ) + + if not return_dict: + return tuple(v for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] if v is not None) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class SbertPooler(nn.Module): + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +@dataclass +class SbertForPreTrainingOutput(ModelOutput): + """ + Output type of :class:`~structbert.utils.BertForPreTraining`. + + Args: + loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when + ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): + Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) + of shape :obj:`(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when + ``output_attentions=True`` is passed or when ``config.output_attentions=True``): + Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, + sequence_length, sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + seq_relationship_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class BaseModelOutputWithPoolingAndCrossAttentionsWithEmbedding( + BaseModelOutputWithPoolingAndCrossAttentions): + embedding_output: torch.FloatTensor = None + logits: Optional[Union[tuple, torch.FloatTensor]] = None + kwargs: dict = None diff --git a/modelscope/models/nlp/heads/__init__.py b/modelscope/models/nlp/heads/__init__.py new file mode 100644 index 00000000..d1c8d972 --- /dev/null +++ b/modelscope/models/nlp/heads/__init__.py @@ -0,0 +1,3 @@ +from .sequence_classification_head import SequenceClassificationHead + +__all__ = ['SequenceClassificationHead'] diff --git a/modelscope/models/nlp/heads/sequence_classification_head.py b/modelscope/models/nlp/heads/sequence_classification_head.py new file mode 100644 index 00000000..78ff18d3 --- /dev/null +++ b/modelscope/models/nlp/heads/sequence_classification_head.py @@ -0,0 +1,44 @@ +import importlib +from typing import Dict, List, Optional, Union + +import torch +import torch.nn.functional as F +from torch import nn + +from ....metainfo import Heads +from ....outputs import OutputKeys +from ....utils.constant import Tasks +from ...base import TorchHead +from ...builder import HEADS + + +@HEADS.register_module( + Tasks.text_classification, module_name=Heads.text_classification) +class SequenceClassificationHead(TorchHead): + + def __init__(self, **kwargs): + super().__init__(**kwargs) + config = self.config + self.num_labels = config.num_labels + self.config = config + classifier_dropout = ( + config['classifier_dropout'] if config.get('classifier_dropout') + is not None else config['hidden_dropout_prob']) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config['hidden_size'], + config['num_labels']) + + def forward(self, inputs=None): + if isinstance(inputs, dict): + assert inputs.get('pooled_output') is not None + pooled_output = inputs.get('pooled_output') + else: + pooled_output = inputs + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + return {OutputKeys.LOGITS: logits} + + def compute_loss(self, outputs: Dict[str, torch.Tensor], + labels) -> Dict[str, torch.Tensor]: + logits = outputs[OutputKeys.LOGITS] + return {OutputKeys.LOSS: F.cross_entropy(logits, labels)} diff --git a/modelscope/models/nlp/palm_for_text_generation.py b/modelscope/models/nlp/palm_for_text_generation.py index 1d5de894..e37dec7e 100644 --- a/modelscope/models/nlp/palm_for_text_generation.py +++ b/modelscope/models/nlp/palm_for_text_generation.py @@ -2,8 +2,7 @@ from typing import Dict from ...metainfo import Models from ...utils.constant import Tasks -from ..base import Tensor -from ..base_torch import TorchModel +from ..base import Tensor, TorchModel from ..builder import MODELS __all__ = ['PalmForTextGeneration'] diff --git a/modelscope/models/nlp/sbert_for_sequence_classification.py b/modelscope/models/nlp/sbert_for_sequence_classification.py index a685fcf7..fc77a788 100644 --- a/modelscope/models/nlp/sbert_for_sequence_classification.py +++ b/modelscope/models/nlp/sbert_for_sequence_classification.py @@ -42,6 +42,9 @@ class SbertTextClassfier(SbertPreTrainedModel): return {'logits': logits, 'loss': loss} return {'logits': logits} + def build(**kwags): + return SbertTextClassfier.from_pretrained(model_dir, **model_args) + class SbertForSequenceClassificationBase(Model): diff --git a/modelscope/models/nlp/sequence_classification.py b/modelscope/models/nlp/sequence_classification.py new file mode 100644 index 00000000..b867f130 --- /dev/null +++ b/modelscope/models/nlp/sequence_classification.py @@ -0,0 +1,85 @@ +import os +from typing import Any, Dict + +import json +import numpy as np + +from ...metainfo import TaskModels +from ...outputs import OutputKeys +from ...utils.constant import Tasks +from ..builder import MODELS +from .task_model import SingleBackboneTaskModelBase + +__all__ = ['SequenceClassificationModel'] + + +@MODELS.register_module( + Tasks.sentiment_classification, module_name=TaskModels.text_classification) +@MODELS.register_module( + Tasks.text_classification, module_name=TaskModels.text_classification) +class SequenceClassificationModel(SingleBackboneTaskModelBase): + + def __init__(self, model_dir: str, *args, **kwargs): + """initialize the sequence classification model from the `model_dir` path. + + Args: + model_dir (str): the model path. + """ + super().__init__(model_dir, *args, **kwargs) + if 'base_model_prefix' in kwargs: + self._base_model_prefix = kwargs['base_model_prefix'] + + backbone_cfg = self.cfg.backbone + head_cfg = self.cfg.head + + # get the num_labels from label_mapping.json + self.id2label = {} + self.label_path = os.path.join(model_dir, 'label_mapping.json') + if os.path.exists(self.label_path): + with open(self.label_path) as f: + self.label_mapping = json.load(f) + self.id2label = { + idx: name + for name, idx in self.label_mapping.items() + } + head_cfg['num_labels'] = len(self.label_mapping) + + self.build_backbone(backbone_cfg) + self.build_head(head_cfg) + + def forward(self, input: Dict[str, Any]) -> Dict[str, np.ndarray]: + outputs = super().forward(input) + sequence_output, pooled_output = self.extract_backbone_outputs(outputs) + outputs = self.head.forward(pooled_output) + if 'labels' in input: + loss = self.compute_loss(outputs, input['labels']) + outputs.update(loss) + return outputs + + def extract_logits(self, outputs): + return outputs[OutputKeys.LOGITS].cpu().detach() + + def extract_backbone_outputs(self, outputs): + sequence_output = None + pooled_output = None + if hasattr(self.backbone, 'extract_sequence_outputs'): + sequence_output = self.backbone.extract_sequence_outputs(outputs) + if hasattr(self.backbone, 'extract_pooled_outputs'): + pooled_output = self.backbone.extract_pooled_outputs(outputs) + return sequence_output, pooled_output + + def compute_loss(self, outputs, labels): + loss = self.head.compute_loss(outputs, labels) + return loss + + def postprocess(self, input, **kwargs): + logits = self.extract_logits(input) + probs = logits.softmax(-1).numpy() + pred = logits.argmax(-1).numpy() + logits = logits.numpy() + res = { + OutputKeys.PREDICTIONS: pred, + OutputKeys.PROBABILITIES: probs, + OutputKeys.LOGITS: logits + } + return res diff --git a/modelscope/models/nlp/space/modules/__init__.py b/modelscope/models/nlp/space/modules/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/modelscope/models/nlp/space/dialog_intent_prediction_model.py b/modelscope/models/nlp/space_for_dialog_intent_prediction.py similarity index 81% rename from modelscope/models/nlp/space/dialog_intent_prediction_model.py rename to modelscope/models/nlp/space_for_dialog_intent_prediction.py index a75dc1a4..fb5a926e 100644 --- a/modelscope/models/nlp/space/dialog_intent_prediction_model.py +++ b/modelscope/models/nlp/space_for_dialog_intent_prediction.py @@ -3,15 +3,14 @@ import os from typing import Any, Dict -from ....metainfo import Models -from ....preprocessors.space.fields.intent_field import IntentBPETextField -from ....trainers.nlp.space.trainer.intent_trainer import IntentTrainer -from ....utils.config import Config -from ....utils.constant import ModelFile, Tasks -from ...base import Model, Tensor -from ...builder import MODELS -from .model.generator import Generator -from .model.model_base import SpaceModelBase +from ...metainfo import Models +from ...preprocessors.space.fields.intent_field import IntentBPETextField +from ...trainers.nlp.space.trainer.intent_trainer import IntentTrainer +from ...utils.config import Config +from ...utils.constant import ModelFile, Tasks +from ..base import Model, Tensor +from ..builder import MODELS +from .backbones import SpaceGenerator, SpaceModelBase __all__ = ['SpaceForDialogIntent'] @@ -37,7 +36,8 @@ class SpaceForDialogIntent(Model): 'text_field', IntentBPETextField(self.model_dir, config=self.config)) - self.generator = Generator.create(self.config, reader=self.text_field) + self.generator = SpaceGenerator.create( + self.config, reader=self.text_field) self.model = SpaceModelBase.create( model_dir=model_dir, config=self.config, diff --git a/modelscope/models/nlp/space/dialog_modeling_model.py b/modelscope/models/nlp/space_for_dialog_modeling.py similarity index 82% rename from modelscope/models/nlp/space/dialog_modeling_model.py rename to modelscope/models/nlp/space_for_dialog_modeling.py index e922d073..9ac6e099 100644 --- a/modelscope/models/nlp/space/dialog_modeling_model.py +++ b/modelscope/models/nlp/space_for_dialog_modeling.py @@ -3,15 +3,14 @@ import os from typing import Any, Dict, Optional -from ....metainfo import Models -from ....preprocessors.space.fields.gen_field import MultiWOZBPETextField -from ....trainers.nlp.space.trainer.gen_trainer import MultiWOZTrainer -from ....utils.config import Config -from ....utils.constant import ModelFile, Tasks -from ...base import Model, Tensor -from ...builder import MODELS -from .model.generator import Generator -from .model.model_base import SpaceModelBase +from ...metainfo import Models +from ...preprocessors.space.fields.gen_field import MultiWOZBPETextField +from ...trainers.nlp.space.trainer.gen_trainer import MultiWOZTrainer +from ...utils.config import Config +from ...utils.constant import ModelFile, Tasks +from ..base import Model, Tensor +from ..builder import MODELS +from .backbones import SpaceGenerator, SpaceModelBase __all__ = ['SpaceForDialogModeling'] @@ -35,7 +34,8 @@ class SpaceForDialogModeling(Model): self.text_field = kwargs.pop( 'text_field', MultiWOZBPETextField(self.model_dir, config=self.config)) - self.generator = Generator.create(self.config, reader=self.text_field) + self.generator = SpaceGenerator.create( + self.config, reader=self.text_field) self.model = SpaceModelBase.create( model_dir=model_dir, config=self.config, diff --git a/modelscope/models/nlp/space/dialog_state_tracking_model.py b/modelscope/models/nlp/space_for_dialog_state_tracking.py similarity index 95% rename from modelscope/models/nlp/space/dialog_state_tracking_model.py rename to modelscope/models/nlp/space_for_dialog_state_tracking.py index 30f21acb..73dd7d3f 100644 --- a/modelscope/models/nlp/space/dialog_state_tracking_model.py +++ b/modelscope/models/nlp/space_for_dialog_state_tracking.py @@ -2,10 +2,10 @@ import os from typing import Any, Dict from modelscope.utils.constant import Tasks -from ....metainfo import Models -from ....utils.nlp.space.utils_dst import batch_to_device -from ...base import Model, Tensor -from ...builder import MODELS +from ...metainfo import Models +from ...utils.nlp.space.utils_dst import batch_to_device +from ..base import Model, Tensor +from ..builder import MODELS __all__ = ['SpaceForDialogStateTracking'] diff --git a/modelscope/models/nlp/task_model.py b/modelscope/models/nlp/task_model.py new file mode 100644 index 00000000..2effd6c6 --- /dev/null +++ b/modelscope/models/nlp/task_model.py @@ -0,0 +1,489 @@ +import os.path +import re +from abc import ABC +from collections import OrderedDict +from typing import Any, Dict + +import torch +from torch import nn + +from ...utils.config import ConfigDict +from ...utils.constant import Fields, Tasks +from ...utils.logger import get_logger +from ...utils.utils import if_func_recieve_dict_inputs +from ..base import TorchModel +from ..builder import build_backbone, build_head + +logger = get_logger(__name__) + +__all__ = ['EncoderDecoderTaskModelBase', 'SingleBackboneTaskModelBase'] + + +def _repr(modules, depth=1): + # model name log level control + if depth == 0: + return modules._get_name() + # We treat the extra repr like the sub-module, one item per line + extra_lines = [] + extra_repr = modules.extra_repr() + # empty string will be split into list [''] + if extra_repr: + extra_lines = extra_repr.split('\n') + child_lines = [] + + def _addindent(s_, numSpaces): + s = s_.split('\n') + # don't do anything for single-line stuff + if len(s) == 1: + return s_ + first = s.pop(0) + s = [(numSpaces * ' ') + line for line in s] + s = '\n'.join(s) + s = first + '\n' + s + return s + + for key, module in modules._modules.items(): + mod_str = _repr(module, depth - 1) + mod_str = _addindent(mod_str, 2) + child_lines.append('(' + key + '): ' + mod_str) + lines = extra_lines + child_lines + + main_str = modules._get_name() + '(' + if lines: + # simple one-liner info, which most builtin Modules will use + if len(extra_lines) == 1 and not child_lines: + main_str += extra_lines[0] + else: + main_str += '\n ' + '\n '.join(lines) + '\n' + + main_str += ')' + return main_str + + +class BaseTaskModel(TorchModel, ABC): + """ Base task model interface for nlp + + """ + # keys to ignore when load missing + _keys_to_ignore_on_load_missing = None + # keys to ignore when load unexpected + _keys_to_ignore_on_load_unexpected = None + # backbone prefix, default None + _backbone_prefix = None + + def __init__(self, model_dir: str, *args, **kwargs): + super().__init__(model_dir, *args, **kwargs) + self.cfg = ConfigDict(kwargs) + + def __repr__(self): + # only log backbone and head name + depth = 1 + return _repr(self, depth) + + @classmethod + def _instantiate(cls, **kwargs): + model_dir = kwargs.get('model_dir') + model = cls(**kwargs) + model.load_checkpoint(model_local_dir=model_dir, **kwargs) + return model + + def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: + pass + + def load_checkpoint(self, + model_local_dir, + default_dtype=None, + load_state_fn=None, + **kwargs): + """ + Load model checkpoint file and feed the parameters into the model. + Args: + model_local_dir: The actual checkpoint dir on local disk. + default_dtype: Set the default float type by 'torch.set_default_dtype' + load_state_fn: An optional load_state_fn used to load state_dict into the model. + + Returns: + + """ + # TODO Sharded ckpt + ckpt_file = os.path.join(model_local_dir, 'pytorch_model.bin') + state_dict = torch.load(ckpt_file, map_location='cpu') + if default_dtype is not None: + torch.set_default_dtype(default_dtype) + + missing_keys, unexpected_keys, mismatched_keys, error_msgs = self._load_checkpoint( + state_dict, + load_state_fn=load_state_fn, + ignore_mismatched_sizes=True, + _fast_init=True, + ) + + return { + 'missing_keys': missing_keys, + 'unexpected_keys': unexpected_keys, + 'mismatched_keys': mismatched_keys, + 'error_msgs': error_msgs, + } + + def _load_checkpoint( + self, + state_dict, + load_state_fn, + ignore_mismatched_sizes, + _fast_init, + ): + # Retrieve missing & unexpected_keys + model_state_dict = self.state_dict() + prefix = self._backbone_prefix + + # add head prefix + new_state_dict = OrderedDict() + for name, module in state_dict.items(): + if not name.startswith(prefix) and not name.startswith('head'): + new_state_dict['.'.join(['head', name])] = module + else: + new_state_dict[name] = module + state_dict = new_state_dict + + loaded_keys = [k for k in state_dict.keys()] + expected_keys = list(model_state_dict.keys()) + + def _fix_key(key): + if 'beta' in key: + return key.replace('beta', 'bias') + if 'gamma' in key: + return key.replace('gamma', 'weight') + return key + + original_loaded_keys = loaded_keys + loaded_keys = [_fix_key(key) for key in loaded_keys] + + if len(prefix) > 0: + has_prefix_module = any(s.startswith(prefix) for s in loaded_keys) + expects_prefix_module = any( + s.startswith(prefix) for s in expected_keys) + else: + has_prefix_module = False + expects_prefix_module = False + + # key re-naming operations are never done on the keys + # that are loaded, but always on the keys of the newly initialized model + remove_prefix_from_model = not has_prefix_module and expects_prefix_module + add_prefix_to_model = has_prefix_module and not expects_prefix_module + + if remove_prefix_from_model: + expected_keys_not_prefixed = [ + s for s in expected_keys if not s.startswith(prefix) + ] + expected_keys = [ + '.'.join(s.split('.')[1:]) if s.startswith(prefix) else s + for s in expected_keys + ] + elif add_prefix_to_model: + expected_keys = ['.'.join([prefix, s]) for s in expected_keys] + + missing_keys = list(set(expected_keys) - set(loaded_keys)) + unexpected_keys = list(set(loaded_keys) - set(expected_keys)) + + if self._keys_to_ignore_on_load_missing is not None: + for pat in self._keys_to_ignore_on_load_missing: + missing_keys = [ + k for k in missing_keys if re.search(pat, k) is None + ] + + if self._keys_to_ignore_on_load_unexpected is not None: + for pat in self._keys_to_ignore_on_load_unexpected: + unexpected_keys = [ + k for k in unexpected_keys if re.search(pat, k) is None + ] + + if _fast_init: + # retrieve unintialized modules and initialize + uninitialized_modules = self.retrieve_modules_from_names( + missing_keys, + prefix=prefix, + add_prefix=add_prefix_to_model, + remove_prefix=remove_prefix_from_model) + for module in uninitialized_modules: + self._init_weights(module) + + # Make sure we are able to load base models as well as derived models (with heads) + start_prefix = '' + model_to_load = self + if len(prefix) > 0 and not hasattr(self, prefix) and has_prefix_module: + start_prefix = prefix + '.' + if len(prefix) > 0 and hasattr(self, prefix) and not has_prefix_module: + model_to_load = getattr(self, prefix) + if any(key in expected_keys_not_prefixed for key in loaded_keys): + raise ValueError( + 'The state dictionary of the model you are trying to load is corrupted. Are you sure it was ' + 'properly saved?') + + def _find_mismatched_keys( + state_dict, + model_state_dict, + loaded_keys, + add_prefix_to_model, + remove_prefix_from_model, + ignore_mismatched_sizes, + ): + mismatched_keys = [] + if ignore_mismatched_sizes: + for checkpoint_key in loaded_keys: + model_key = checkpoint_key + if remove_prefix_from_model: + # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it. + model_key = f'{prefix}.{checkpoint_key}' + elif add_prefix_to_model: + # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it. + model_key = '.'.join(checkpoint_key.split('.')[1:]) + + if (model_key in model_state_dict): + model_shape = model_state_dict[model_key].shape + checkpoint_shape = state_dict[checkpoint_key].shape + if (checkpoint_shape != model_shape): + mismatched_keys.append( + (checkpoint_key, + state_dict[checkpoint_key].shape, + model_state_dict[model_key].shape)) + del state_dict[checkpoint_key] + return mismatched_keys + + def _load_state_dict_into_model(model_to_load, state_dict, + start_prefix): + # Convert old format to new format if needed from a PyTorch state_dict + old_keys = [] + new_keys = [] + for key in state_dict.keys(): + new_key = None + if 'gamma' in key: + new_key = key.replace('gamma', 'weight') + if 'beta' in key: + new_key = key.replace('beta', 'bias') + if new_key: + old_keys.append(key) + new_keys.append(new_key) + for old_key, new_key in zip(old_keys, new_keys): + state_dict[new_key] = state_dict.pop(old_key) + + # copy state_dict so _load_from_state_dict can modify it + metadata = getattr(state_dict, '_metadata', None) + state_dict = state_dict.copy() + if metadata is not None: + state_dict._metadata = metadata + + error_msgs = [] + + if load_state_fn is not None: + load_state_fn( + model_to_load, + state_dict, + prefix=start_prefix, + local_metadata=None, + error_msgs=error_msgs) + else: + + def load(module: nn.Module, prefix=''): + local_metadata = {} if metadata is None else metadata.get( + prefix[:-1], {}) + args = (state_dict, prefix, local_metadata, True, [], [], + error_msgs) + module._load_from_state_dict(*args) + for name, child in module._modules.items(): + if child is not None: + load(child, prefix + name + '.') + + load(model_to_load, prefix=start_prefix) + + return error_msgs + + # Whole checkpoint + mismatched_keys = _find_mismatched_keys( + state_dict, + model_state_dict, + original_loaded_keys, + add_prefix_to_model, + remove_prefix_from_model, + ignore_mismatched_sizes, + ) + error_msgs = _load_state_dict_into_model(model_to_load, state_dict, + start_prefix) + + if len(error_msgs) > 0: + error_msg = '\n\t'.join(error_msgs) + raise RuntimeError( + f'Error(s) in loading state_dict for {self.__class__.__name__}:\n\t{error_msg}' + ) + + if len(unexpected_keys) > 0: + logger.warning( + f'Some weights of the model checkpoint were not used when' + f' initializing {self.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are' + f' initializing {self.__class__.__name__} from the checkpoint of a model trained on another task or' + ' with another architecture (e.g. initializing a BertForSequenceClassification model from a' + ' BertForPreTraining model).\n- This IS NOT expected if you are initializing' + f' {self.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical' + ' (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).' + ) + else: + logger.info( + f'All model checkpoint weights were used when initializing {self.__class__.__name__}.\n' + ) + if len(missing_keys) > 0: + logger.warning( + f'Some weights of {self.__class__.__name__} were not initialized from the model checkpoint' + f' and are newly initialized: {missing_keys}\nYou should probably' + ' TRAIN this model on a down-stream task to be able to use it for predictions and inference.' + ) + elif len(mismatched_keys) == 0: + logger.info( + f'All the weights of {self.__class__.__name__} were initialized from the model checkpoint ' + f'If your task is similar to the task the model of the checkpoint' + f' was trained on, you can already use {self.__class__.__name__} for predictions without further' + ' training.') + if len(mismatched_keys) > 0: + mismatched_warning = '\n'.join([ + f'- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated' + for key, shape1, shape2 in mismatched_keys + ]) + logger.warning( + f'Some weights of {self.__class__.__name__} were not initialized from the model checkpoint' + f' and are newly initialized because the shapes did not' + f' match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able' + ' to use it for predictions and inference.') + + return missing_keys, unexpected_keys, mismatched_keys, error_msgs + + def retrieve_modules_from_names(self, + names, + prefix=None, + add_prefix=False, + remove_prefix=False): + module_keys = set(['.'.join(key.split('.')[:-1]) for key in names]) + + # torch.nn.ParameterList is a special case where two parameter keywords + # are appended to the module name, *e.g.* bert.special_embeddings.0 + module_keys = module_keys.union( + set([ + '.'.join(key.split('.')[:-2]) for key in names + if key[-1].isdigit() + ])) + + retrieved_modules = [] + # retrieve all modules that has at least one missing weight name + for name, module in self.named_modules(): + if remove_prefix: + name = '.'.join( + name.split('.')[1:]) if name.startswith(prefix) else name + elif add_prefix: + name = '.'.join([prefix, name]) if len(name) > 0 else prefix + + if name in module_keys: + retrieved_modules.append(module) + + return retrieved_modules + + +class SingleBackboneTaskModelBase(BaseTaskModel): + """ + This is the base class of any single backbone nlp task classes. + """ + # The backbone prefix defaults to "bert" + _backbone_prefix = 'bert' + + # The head prefix defaults to "head" + _head_prefix = 'head' + + def __init__(self, model_dir: str, *args, **kwargs): + super().__init__(model_dir, *args, **kwargs) + + def build_backbone(self, cfg): + if 'prefix' in cfg: + self._backbone_prefix = cfg['prefix'] + backbone = build_backbone(cfg, field=Fields.nlp) + setattr(self, cfg['prefix'], backbone) + + def build_head(self, cfg): + if 'prefix' in cfg: + self._head_prefix = cfg['prefix'] + head = build_head(cfg) + setattr(self, self._head_prefix, head) + return head + + @property + def backbone(self): + if 'backbone' != self._backbone_prefix: + return getattr(self, self._backbone_prefix) + return super().__getattr__('backbone') + + @property + def head(self): + if 'head' != self._head_prefix: + return getattr(self, self._head_prefix) + return super().__getattr__('head') + + def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: + """default forward method is the backbone-only forward""" + if if_func_recieve_dict_inputs(self.backbone.forward, input): + outputs = self.backbone.forward(input) + else: + outputs = self.backbone.forward(**input) + return outputs + + +class EncoderDecoderTaskModelBase(BaseTaskModel): + """ + This is the base class of encoder-decoder nlp task classes. + """ + # The encoder backbone prefix, default to "encoder" + _encoder_prefix = 'encoder' + # The decoder backbone prefix, default to "decoder" + _decoder_prefix = 'decoder' + # The key in cfg specifing the encoder type + _encoder_key_in_cfg = 'encoder_type' + # The key in cfg specifing the decoder type + _decoder_key_in_cfg = 'decoder_type' + + def __init__(self, model_dir: str, *args, **kwargs): + super().__init__(model_dir, *args, **kwargs) + + def build_encoder(self): + encoder = build_backbone( + self.cfg, + type_name=self._encoder_key_in_cfg, + task_name=Tasks.backbone) + setattr(self, self._encoder_prefix, encoder) + return encoder + + def build_decoder(self): + decoder = build_backbone( + self.cfg, + type_name=self._decoder_key_in_cfg, + task_name=Tasks.backbone) + setattr(self, self._decoder_prefix, decoder) + return decoder + + @property + def encoder_(self): + return getattr(self, self._encoder_prefix) + + @property + def decoder_(self): + return getattr(self, self._decoder_prefix) + + def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: + if if_func_recieve_dict_inputs(self.encoder_.forward, input): + encoder_outputs = self.encoder_.forward(input) + else: + encoder_outputs = self.encoder_.forward(**input) + decoder_inputs = self.project_decoder_inputs_and_mediate( + input, encoder_outputs) + if if_func_recieve_dict_inputs(self.decoder_.forward, input): + outputs = self.decoder_.forward(decoder_inputs) + else: + outputs = self.decoder_.forward(**decoder_inputs) + + return outputs + + def project_decoder_inputs_and_mediate(self, input, encoder_outputs): + return {**input, **encoder_outputs} diff --git a/modelscope/outputs.py b/modelscope/outputs.py index eda56006..9794f53e 100644 --- a/modelscope/outputs.py +++ b/modelscope/outputs.py @@ -4,6 +4,7 @@ from modelscope.utils.constant import Tasks class OutputKeys(object): + LOSS = 'loss' LOGITS = 'logits' SCORES = 'scores' LABEL = 'label' @@ -22,6 +23,8 @@ class OutputKeys(object): TRANSLATION = 'translation' RESPONSE = 'response' PREDICTION = 'prediction' + PREDICTIONS = 'predictions' + PROBABILITIES = 'probabilities' DIALOG_STATES = 'dialog_states' VIDEO_EMBEDDING = 'video_embedding' diff --git a/modelscope/pipelines/builder.py b/modelscope/pipelines/builder.py index c008127f..6755897f 100644 --- a/modelscope/pipelines/builder.py +++ b/modelscope/pipelines/builder.py @@ -30,7 +30,8 @@ DEFAULT_MODEL_FOR_PIPELINE = { Tasks.nli: (Pipelines.nli, 'damo/nlp_structbert_nli_chinese-base'), Tasks.sentiment_classification: (Pipelines.sentiment_classification, - 'damo/nlp_structbert_sentiment-classification_chinese-base'), + 'damo/nlp_structbert_sentiment-classification_chinese-base' + ), # TODO: revise back after passing the pr Tasks.image_matting: (Pipelines.image_matting, 'damo/cv_unet_image-matting'), Tasks.text_classification: (Pipelines.sentiment_analysis, diff --git a/modelscope/pipelines/nlp/dialog_intent_prediction_pipeline.py b/modelscope/pipelines/nlp/dialog_intent_prediction_pipeline.py index 842ae5a2..d5869ddd 100644 --- a/modelscope/pipelines/nlp/dialog_intent_prediction_pipeline.py +++ b/modelscope/pipelines/nlp/dialog_intent_prediction_pipeline.py @@ -2,10 +2,10 @@ from typing import Any, Dict, Union -from modelscope.outputs import OutputKeys from ...metainfo import Pipelines from ...models import Model from ...models.nlp import SpaceForDialogIntent +from ...outputs import OutputKeys from ...preprocessors import DialogIntentPredictionPreprocessor from ...utils.constant import Tasks from ..base import Pipeline diff --git a/modelscope/pipelines/nlp/dialog_modeling_pipeline.py b/modelscope/pipelines/nlp/dialog_modeling_pipeline.py index 6d91bd67..09d09b64 100644 --- a/modelscope/pipelines/nlp/dialog_modeling_pipeline.py +++ b/modelscope/pipelines/nlp/dialog_modeling_pipeline.py @@ -2,10 +2,10 @@ from typing import Dict, Union -from modelscope.outputs import OutputKeys from ...metainfo import Pipelines from ...models import Model from ...models.nlp import SpaceForDialogModeling +from ...outputs import OutputKeys from ...preprocessors import DialogModelingPreprocessor from ...utils.constant import Tasks from ..base import Pipeline, Tensor diff --git a/modelscope/pipelines/nlp/dialog_state_tracking_pipeline.py b/modelscope/pipelines/nlp/dialog_state_tracking_pipeline.py index dc6df061..541b0529 100644 --- a/modelscope/pipelines/nlp/dialog_state_tracking_pipeline.py +++ b/modelscope/pipelines/nlp/dialog_state_tracking_pipeline.py @@ -1,8 +1,8 @@ from typing import Any, Dict, Union -from modelscope.outputs import OutputKeys from ...metainfo import Pipelines from ...models import Model, SpaceForDialogStateTracking +from ...outputs import OutputKeys from ...preprocessors import DialogStateTrackingPreprocessor from ...utils.constant import Tasks from ..base import Pipeline diff --git a/modelscope/pipelines/nlp/sentiment_classification_pipeline.py b/modelscope/pipelines/nlp/sentiment_classification_pipeline.py index f77281a6..e98a74c5 100644 --- a/modelscope/pipelines/nlp/sentiment_classification_pipeline.py +++ b/modelscope/pipelines/nlp/sentiment_classification_pipeline.py @@ -6,7 +6,7 @@ import torch from modelscope.outputs import OutputKeys from ...metainfo import Pipelines from ...models import Model -from ...models.nlp import SbertForSentimentClassification +from ...models.nlp import SequenceClassificationModel from ...preprocessors import SentimentClassificationPreprocessor from ...utils.constant import Tasks from ..base import Pipeline @@ -21,7 +21,7 @@ __all__ = ['SentimentClassificationPipeline'] class SentimentClassificationPipeline(Pipeline): def __init__(self, - model: Union[SbertForSentimentClassification, str], + model: Union[SequenceClassificationModel, str], preprocessor: SentimentClassificationPreprocessor = None, first_sequence='first_sequence', second_sequence='second_sequence', @@ -29,14 +29,14 @@ class SentimentClassificationPipeline(Pipeline): """use `model` and `preprocessor` to create a nlp text classification pipeline for prediction Args: - model (SbertForSentimentClassification): a model instance + model (SequenceClassificationModel): a model instance preprocessor (SentimentClassificationPreprocessor): a preprocessor instance """ - assert isinstance(model, str) or isinstance(model, SbertForSentimentClassification), \ - 'model must be a single str or SbertForSentimentClassification' + assert isinstance(model, str) or isinstance(model, SequenceClassificationModel), \ + 'model must be a single str or SentimentClassification' model = model if isinstance( model, - SbertForSentimentClassification) else Model.from_pretrained(model) + SequenceClassificationModel) else Model.from_pretrained(model) if preprocessor is None: preprocessor = SentimentClassificationPreprocessor( model.model_dir, diff --git a/modelscope/preprocessors/base.py b/modelscope/preprocessors/base.py index 43a7c8d0..d0142693 100644 --- a/modelscope/preprocessors/base.py +++ b/modelscope/preprocessors/base.py @@ -3,12 +3,23 @@ from abc import ABC, abstractmethod from typing import Any, Dict +from modelscope.utils.constant import ModeKeys + class Preprocessor(ABC): def __init__(self, *args, **kwargs): + self._mode = ModeKeys.INFERENCE pass @abstractmethod def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: pass + + @property + def mode(self): + return self._mode + + @mode.setter + def mode(self, value): + self._mode = value diff --git a/modelscope/preprocessors/nlp.py b/modelscope/preprocessors/nlp.py index 59c69b8f..52560142 100644 --- a/modelscope/preprocessors/nlp.py +++ b/modelscope/preprocessors/nlp.py @@ -7,7 +7,7 @@ from transformers import AutoTokenizer from ..metainfo import Preprocessors from ..models import Model -from ..utils.constant import Fields, InputFields +from ..utils.constant import Fields, InputFields, ModeKeys from ..utils.hub import parse_label_mapping from ..utils.type_assert import type_assert from .base import Preprocessor @@ -52,6 +52,7 @@ class NLPPreprocessorBase(Preprocessor): self.second_sequence = kwargs.pop('second_sequence', 'second_sequence') self.tokenize_kwargs = kwargs self.tokenizer = self.build_tokenizer(model_dir) + self.label2id = parse_label_mapping(self.model_dir) def build_tokenizer(self, model_dir): from sofa import SbertTokenizer @@ -83,7 +84,12 @@ class NLPPreprocessorBase(Preprocessor): text_a = data.get(self.first_sequence) text_b = data.get(self.second_sequence, None) - return self.tokenizer(text_a, text_b, **self.tokenize_kwargs) + rst = self.tokenizer(text_a, text_b, **self.tokenize_kwargs) + if self._mode == ModeKeys.TRAIN: + rst = {k: v.squeeze() for k, v in rst.items()} + if self.label2id is not None and 'label' in data: + rst['label'] = self.label2id[str(data['label'])] + return rst @PREPROCESSORS.register_module( @@ -200,16 +206,6 @@ class SentenceSimilarityFinetunePreprocessor(SentenceSimilarityPreprocessor): def __init__(self, model_dir: str, *args, **kwargs): kwargs['padding'] = 'max_length' super().__init__(model_dir, *args, **kwargs) - self.label2id = parse_label_mapping(self.model_dir) - - @type_assert(object, (str, tuple, Dict)) - def __call__(self, data: Union[str, tuple, Dict]) -> Dict[str, Any]: - rst = super().__call__(data) - rst = {k: v.squeeze() for k, v in rst.items()} - if self.label2id is not None and 'label' in data: - rst['labels'] = [] - rst['labels'].append(self.label2id[str(data['label'])]) - return rst @PREPROCESSORS.register_module( diff --git a/modelscope/trainers/trainer.py b/modelscope/trainers/trainer.py index 6a08ffa7..399bdead 100644 --- a/modelscope/trainers/trainer.py +++ b/modelscope/trainers/trainer.py @@ -2,6 +2,7 @@ import os.path import random import time +from collections.abc import Mapping from distutils.version import LooseVersion from functools import partial from typing import Callable, List, Optional, Tuple, Union @@ -16,8 +17,7 @@ from torch.utils.data.distributed import DistributedSampler from modelscope.hub.snapshot_download import snapshot_download from modelscope.metrics import build_metric, task_default_metrics -from modelscope.models.base import Model -from modelscope.models.base_torch import TorchModel +from modelscope.models.base import Model, TorchModel from modelscope.msdatasets.ms_dataset import MsDataset from modelscope.preprocessors import build_preprocessor from modelscope.preprocessors.base import Preprocessor @@ -26,12 +26,13 @@ from modelscope.trainers.hooks.priority import Priority, get_priority from modelscope.trainers.lrscheduler.builder import build_lr_scheduler from modelscope.trainers.optimizer.builder import build_optimizer from modelscope.utils.config import Config, ConfigDict -from modelscope.utils.constant import (Hubs, ModeKeys, ModelFile, Tasks, - TrainerStages) +from modelscope.utils.constant import (DEFAULT_MODEL_REVISION, Hubs, ModeKeys, + ModelFile, Tasks, TrainerStages) from modelscope.utils.logger import get_logger from modelscope.utils.registry import build_from_cfg from modelscope.utils.tensor_utils import torch_default_data_collator from modelscope.utils.torch_utils import get_dist_info +from modelscope.utils.utils import if_func_recieve_dict_inputs from .base import BaseTrainer from .builder import TRAINERS from .default_config import DEFAULT_CONFIG @@ -79,13 +80,15 @@ class EpochBasedTrainer(BaseTrainer): optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler._LRScheduler] = (None, None), + model_revision: Optional[str] = DEFAULT_MODEL_REVISION, **kwargs): if isinstance(model, str): if os.path.exists(model): self.model_dir = model if os.path.isdir( model) else os.path.dirname(model) else: - self.model_dir = snapshot_download(model) + self.model_dir = snapshot_download( + model, revision=model_revision) cfg_file = os.path.join(self.model_dir, ModelFile.CONFIGURATION) self.model = self.build_model() else: @@ -112,6 +115,8 @@ class EpochBasedTrainer(BaseTrainer): self.preprocessor = preprocessor elif hasattr(self.cfg, 'preprocessor'): self.preprocessor = self.build_preprocessor() + if self.preprocessor is not None: + self.preprocessor.mode = ModeKeys.TRAIN # TODO @wenmeng.zwm add data collator option # TODO how to fill device option? self.device = int( @@ -264,7 +269,8 @@ class EpochBasedTrainer(BaseTrainer): model = Model.from_pretrained(self.model_dir) if not isinstance(model, nn.Module) and hasattr(model, 'model'): return model.model - return model + elif isinstance(model, nn.Module): + return model def collate_fn(self, data): """Prepare the input just before the forward function. @@ -307,7 +313,8 @@ class EpochBasedTrainer(BaseTrainer): model.train() self._mode = ModeKeys.TRAIN inputs = self.collate_fn(inputs) - if not isinstance(model, Model) and isinstance(inputs, dict): + if isinstance(inputs, Mapping) and not if_func_recieve_dict_inputs( + model.forward, inputs): train_outputs = model.forward(**inputs) else: train_outputs = model.forward(inputs) diff --git a/modelscope/trainers/utils/inference.py b/modelscope/trainers/utils/inference.py index f056fb08..ac828fe5 100644 --- a/modelscope/trainers/utils/inference.py +++ b/modelscope/trainers/utils/inference.py @@ -5,6 +5,7 @@ import pickle import shutil import tempfile import time +from collections.abc import Mapping import torch from torch import distributed as dist @@ -12,6 +13,7 @@ from tqdm import tqdm from modelscope.models.base import Model from modelscope.utils.torch_utils import get_dist_info +from modelscope.utils.utils import if_func_recieve_dict_inputs def single_gpu_test(model, @@ -36,7 +38,10 @@ def single_gpu_test(model, if data_collate_fn is not None: data = data_collate_fn(data) with torch.no_grad(): - if not isinstance(model, Model): + if isinstance(data, + Mapping) and not if_func_recieve_dict_inputs( + model.forward, data): + result = model(**data) else: result = model(data) @@ -87,7 +92,9 @@ def multi_gpu_test(model, if data_collate_fn is not None: data = data_collate_fn(data) with torch.no_grad(): - if not isinstance(model, Model): + if isinstance(data, + Mapping) and not if_func_recieve_dict_inputs( + model.forward, data): result = model(**data) else: result = model(data) diff --git a/modelscope/utils/constant.py b/modelscope/utils/constant.py index adfa8b98..e95ac185 100644 --- a/modelscope/utils/constant.py +++ b/modelscope/utils/constant.py @@ -57,6 +57,7 @@ class NLPTasks(object): summarization = 'summarization' question_answering = 'question-answering' zero_shot_classification = 'zero-shot-classification' + backbone = 'backbone' class AudioTasks(object): @@ -173,6 +174,7 @@ DEFAULT_DATASET_REVISION = 'master' class ModeKeys: TRAIN = 'train' EVAL = 'eval' + INFERENCE = 'inference' class LogKeys: diff --git a/modelscope/utils/registry.py b/modelscope/utils/registry.py index 1ace79ba..1f1710c7 100644 --- a/modelscope/utils/registry.py +++ b/modelscope/utils/registry.py @@ -6,6 +6,7 @@ from typing import List, Tuple, Union from modelscope.utils.import_utils import requires from modelscope.utils.logger import get_logger +TYPE_NAME = 'type' default_group = 'default' logger = get_logger() @@ -159,15 +160,16 @@ def build_from_cfg(cfg, group_key (str, optional): The name of registry group from which module should be searched. default_args (dict, optional): Default initialization arguments. + type_name (str, optional): The name of the type in the config. Returns: object: The constructed object. """ if not isinstance(cfg, dict): raise TypeError(f'cfg must be a dict, but got {type(cfg)}') - if 'type' not in cfg: - if default_args is None or 'type' not in default_args: + if TYPE_NAME not in cfg: + if default_args is None or TYPE_NAME not in default_args: raise KeyError( - '`cfg` or `default_args` must contain the key "type", ' + f'`cfg` or `default_args` must contain the key "{TYPE_NAME}", ' f'but got {cfg}\n{default_args}') if not isinstance(registry, Registry): raise TypeError('registry must be an modelscope.Registry object, ' @@ -184,7 +186,7 @@ def build_from_cfg(cfg, if group_key is None: group_key = default_group - obj_type = args.pop('type') + obj_type = args.pop(TYPE_NAME) if isinstance(obj_type, str): obj_cls = registry.get(obj_type, group_key=group_key) if obj_cls is None: @@ -196,7 +198,10 @@ def build_from_cfg(cfg, raise TypeError( f'type must be a str or valid type, but got {type(obj_type)}') try: - return obj_cls(**args) + if hasattr(obj_cls, '_instantiate'): + return obj_cls._instantiate(**args) + else: + return obj_cls(**args) except Exception as e: # Normal TypeError does not print class name. raise type(e)(f'{obj_cls.__name__}: {e}') diff --git a/modelscope/utils/tensor_utils.py b/modelscope/utils/tensor_utils.py index 93041425..d9e4d040 100644 --- a/modelscope/utils/tensor_utils.py +++ b/modelscope/utils/tensor_utils.py @@ -2,6 +2,8 @@ # Part of the implementation is borrowed from huggingface/transformers. from collections.abc import Mapping +import numpy as np + def torch_nested_numpify(tensors): import torch @@ -27,9 +29,6 @@ def torch_nested_detach(tensors): def torch_default_data_collator(features): # TODO @jiangnana.jnn refine this default data collator import torch - - # if not isinstance(features[0], (dict, BatchEncoding)): - # features = [vars(f) for f in features] first = features[0] if isinstance(first, Mapping): @@ -40,9 +39,14 @@ def torch_default_data_collator(features): if 'label' in first and first['label'] is not None: label = first['label'].item() if isinstance( first['label'], torch.Tensor) else first['label'] - dtype = torch.long if isinstance(label, int) else torch.float - batch['labels'] = torch.tensor([f['label'] for f in features], - dtype=dtype) + # the msdataset return a 0-dimension np.array with a single value, the following part handle this. + if isinstance(label, np.ndarray): + dtype = torch.long if label[( + )].dtype == np.int64 else torch.float + else: + dtype = torch.long if isinstance(label, int) else torch.float + batch['labels'] = torch.tensor( + np.array([f['label'] for f in features]), dtype=dtype) elif 'label_ids' in first and first['label_ids'] is not None: if isinstance(first['label_ids'], torch.Tensor): batch['labels'] = torch.stack( diff --git a/modelscope/utils/utils.py b/modelscope/utils/utils.py new file mode 100644 index 00000000..d5c275d3 --- /dev/null +++ b/modelscope/utils/utils.py @@ -0,0 +1,28 @@ +# Copyright (c) Alibaba, Inc. and its affiliates. + +import inspect + + +def if_func_recieve_dict_inputs(func, inputs): + """to decide if a func could recieve dict inputs or not + + Args: + func (class): the target function to be inspected + inputs (dicts): the inputs that will send to the function + + Returns: + bool: if func recieve dict, then recieve True + + Examples: + input = {"input_dict":xxx, "attention_masked":xxx}, + function(self, inputs) then return True + function(inputs) then return True + function(self, input_dict, attention_masked) then return False + """ + signature = inspect.signature(func) + func_inputs = list(signature.parameters.keys() - set(['self'])) + mismatched_inputs = list(set(func_inputs) - set(inputs)) + if len(func_inputs) == len(mismatched_inputs): + return True + else: + return False diff --git a/tests/models/test_base_torch.py b/tests/models/test_base_torch.py index 2da9874b..dcdf79be 100644 --- a/tests/models/test_base_torch.py +++ b/tests/models/test_base_torch.py @@ -7,7 +7,7 @@ import torch import torch.nn as nn import torch.nn.functional as F -from modelscope.models.base_torch import TorchModel +from modelscope.models.base import TorchModel class TorchBaseTest(unittest.TestCase): diff --git a/tests/pipelines/test_sentiment_classification.py b/tests/pipelines/test_sentiment_classification.py index 829c0f7d..0fab9be1 100644 --- a/tests/pipelines/test_sentiment_classification.py +++ b/tests/pipelines/test_sentiment_classification.py @@ -3,7 +3,8 @@ import unittest from modelscope.hub.snapshot_download import snapshot_download from modelscope.models import Model -from modelscope.models.nlp import SbertForSentimentClassification +from modelscope.models.nlp import (SbertForSentimentClassification, + SequenceClassificationModel) from modelscope.pipelines import SentimentClassificationPipeline, pipeline from modelscope.preprocessors import SentimentClassificationPreprocessor from modelscope.utils.constant import Tasks @@ -18,39 +19,44 @@ class SentimentClassificationTest(unittest.TestCase): def test_run_with_direct_file_download(self): cache_path = snapshot_download(self.model_id) tokenizer = SentimentClassificationPreprocessor(cache_path) - model = SbertForSentimentClassification( - cache_path, tokenizer=tokenizer) + model = SequenceClassificationModel.from_pretrained( + self.model_id, num_labels=2) pipeline1 = SentimentClassificationPipeline( model, preprocessor=tokenizer) pipeline2 = pipeline( Tasks.sentiment_classification, model=model, - preprocessor=tokenizer) + preprocessor=tokenizer, + model_revision='beta') print(f'sentence1: {self.sentence1}\n' f'pipeline1:{pipeline1(input=self.sentence1)}') print() print(f'sentence1: {self.sentence1}\n' f'pipeline1: {pipeline2(input=self.sentence1)}') - @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') + @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_model_from_modelhub(self): model = Model.from_pretrained(self.model_id) tokenizer = SentimentClassificationPreprocessor(model.model_dir) pipeline_ins = pipeline( task=Tasks.sentiment_classification, model=model, - preprocessor=tokenizer) + preprocessor=tokenizer, + model_revision='beta') print(pipeline_ins(input=self.sentence1)) - @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') + @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_run_with_model_name(self): pipeline_ins = pipeline( - task=Tasks.sentiment_classification, model=self.model_id) + task=Tasks.sentiment_classification, + model=self.model_id, + model_revision='beta') print(pipeline_ins(input=self.sentence1)) - @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') + @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_default_model(self): - pipeline_ins = pipeline(task=Tasks.sentiment_classification) + pipeline_ins = pipeline( + task=Tasks.sentiment_classification, model_revision='beta') print(pipeline_ins(input=self.sentence1)) diff --git a/tests/trainers/test_trainer_with_nlp.py b/tests/trainers/test_trainer_with_nlp.py index 6deaaa5f..cf2ef6d2 100644 --- a/tests/trainers/test_trainer_with_nlp.py +++ b/tests/trainers/test_trainer_with_nlp.py @@ -56,6 +56,23 @@ class TestTrainerWithNlp(unittest.TestCase): for i in range(10): self.assertIn(f'epoch_{i+1}.pth', results_files) + @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') + def test_trainer_with_backbone_head(self): + model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' + kwargs = dict( + model=model_id, + train_dataset=self.dataset, + eval_dataset=self.dataset, + work_dir=self.tmp_dir, + model_revision='beta') + + trainer = build_trainer(default_args=kwargs) + trainer.train() + results_files = os.listdir(self.tmp_dir) + self.assertIn(f'{trainer.timestamp}.log.json', results_files) + for i in range(10): + self.assertIn(f'epoch_{i+1}.pth', results_files) + @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_trainer_with_model_and_args(self): tmp_dir = tempfile.TemporaryDirectory().name