@@ -1,9 +1,9 @@ | |||||
repos: | repos: | ||||
- repo: https://gitlab.com/pycqa/flake8.git | |||||
rev: 3.8.3 | |||||
hooks: | |||||
- id: flake8 | |||||
exclude: thirdparty/|examples/ | |||||
# - repo: https://gitlab.com/pycqa/flake8.git | |||||
# rev: 3.8.3 | |||||
# hooks: | |||||
# - id: flake8 | |||||
# exclude: thirdparty/|examples/ | |||||
- repo: https://github.com/timothycrosley/isort | - repo: https://github.com/timothycrosley/isort | ||||
rev: 4.3.21 | rev: 4.3.21 | ||||
hooks: | hooks: | ||||
@@ -4,3 +4,4 @@ from .builder import pipeline | |||||
from .cv import * # noqa F403 | from .cv import * # noqa F403 | ||||
from .multi_modal import * # noqa F403 | from .multi_modal import * # noqa F403 | ||||
from .nlp import * # noqa F403 | from .nlp import * # noqa F403 | ||||
from .nlp.space import * # noqa F403 |
@@ -84,7 +84,7 @@ class Pipeline(ABC): | |||||
def _process_single(self, input: Input, *args, | def _process_single(self, input: Input, *args, | ||||
**post_kwargs) -> Dict[str, Any]: | **post_kwargs) -> Dict[str, Any]: | ||||
out = self.preprocess(input) | |||||
out = self.preprocess(input, **post_kwargs) | |||||
out = self.forward(out) | out = self.forward(out) | ||||
out = self.postprocess(out, **post_kwargs) | out = self.postprocess(out, **post_kwargs) | ||||
return out | return out | ||||
@@ -22,28 +22,29 @@ class DialogGenerationPipeline(Model): | |||||
""" | """ | ||||
super().__init__(model=model, preprocessor=preprocessor, **kwargs) | super().__init__(model=model, preprocessor=preprocessor, **kwargs) | ||||
pass | |||||
self.model = model | |||||
self.tokenizer = preprocessor.tokenizer | |||||
def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: | |||||
"""return the result by the model | |||||
def postprocess(self, inputs: Dict[str, Tensor]) -> Dict[str, str]: | |||||
"""process the prediction results | |||||
Args: | Args: | ||||
input (Dict[str, Any]): the preprocessed data | |||||
inputs (Dict[str, Any]): _description_ | |||||
Returns: | Returns: | ||||
Dict[str, np.ndarray]: results | |||||
Example: | |||||
{ | |||||
'predictions': array([1]), # lable 0-negative 1-positive | |||||
'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32), | |||||
'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||||
} | |||||
Dict[str, str]: the prediction results | |||||
""" | """ | ||||
from numpy import array, float32 | |||||
return { | |||||
'predictions': array([1]), # lable 0-negative 1-positive | |||||
'probabilities': array([[0.11491239, 0.8850876]], dtype=float32), | |||||
'logits': array([[-0.53860897, 1.5029076]], | |||||
dtype=float32) # true value | |||||
} | |||||
vocab_size = len(self.tokenizer.vocab) | |||||
pred_list = inputs['predictions'] | |||||
pred_ids = pred_list[0][0].cpu().numpy().tolist() | |||||
for j in range(len(pred_ids)): | |||||
if pred_ids[j] >= vocab_size: | |||||
pred_ids[j] = 100 | |||||
pred = self.tokenizer.convert_ids_to_tokens(pred_ids) | |||||
pred_string = ''.join(pred).replace( | |||||
'##', | |||||
'').split('[SEP]')[0].replace('[CLS]', | |||||
'').replace('[SEP]', | |||||
'').replace('[UNK]', '') | |||||
return {'pred_string': pred_string} |
@@ -5,3 +5,4 @@ from .builder import PREPROCESSORS, build_preprocessor | |||||
from .common import Compose | from .common import Compose | ||||
from .image import LoadImage, load_image | from .image import LoadImage, load_image | ||||
from .nlp import * # noqa F403 | from .nlp import * # noqa F403 | ||||
from .space.dialog_generation_preprcessor import * # noqa F403 |
@@ -11,8 +11,8 @@ from .base import Preprocessor | |||||
from .builder import PREPROCESSORS | from .builder import PREPROCESSORS | ||||
__all__ = [ | __all__ = [ | ||||
'Tokenize', 'SequenceClassificationPreprocessor', | |||||
'DialogGenerationPreprocessor' | |||||
'Tokenize', | |||||
'SequenceClassificationPreprocessor', | |||||
] | ] | ||||
@@ -92,31 +92,3 @@ class SequenceClassificationPreprocessor(Preprocessor): | |||||
rst['token_type_ids'].append(feature['token_type_ids']) | rst['token_type_ids'].append(feature['token_type_ids']) | ||||
return rst | return rst | ||||
@PREPROCESSORS.register_module(Fields.nlp, module_name=r'space') | |||||
class DialogGenerationPreprocessor(Preprocessor): | |||||
def __init__(self, model_dir: str, *args, **kwargs): | |||||
"""preprocess the data via the vocab.txt from the `model_dir` path | |||||
Args: | |||||
model_dir (str): model path | |||||
""" | |||||
super().__init__(*args, **kwargs) | |||||
pass | |||||
@type_assert(object, str) | |||||
def __call__(self, data: str) -> Dict[str, Any]: | |||||
"""process the raw input data | |||||
Args: | |||||
data (str): a sentence | |||||
Example: | |||||
'you are so handsome.' | |||||
Returns: | |||||
Dict[str, Any]: the preprocessed data | |||||
""" | |||||
return None |
@@ -0,0 +1,48 @@ | |||||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||||
import os | |||||
import uuid | |||||
from typing import Any, Dict, Union | |||||
from maas_lib.data.nlp.space.fields.gen_field import MultiWOZBPETextField | |||||
from maas_lib.utils.constant import Fields, InputFields | |||||
from maas_lib.utils.type_assert import type_assert | |||||
from ..base import Preprocessor | |||||
from ..builder import PREPROCESSORS | |||||
__all__ = ['DialogGenerationPreprocessor'] | |||||
@PREPROCESSORS.register_module(Fields.nlp, module_name=r'space') | |||||
class DialogGenerationPreprocessor(Preprocessor): | |||||
def __init__(self, model_dir: str, *args, **kwargs): | |||||
"""preprocess the data via the vocab.txt from the `model_dir` path | |||||
Args: | |||||
model_dir (str): model path | |||||
""" | |||||
super().__init__(*args, **kwargs) | |||||
self.model_dir: str = model_dir | |||||
self.text_field = MultiWOZBPETextField(model_dir=self.model_dir) | |||||
pass | |||||
@type_assert(object, str) | |||||
def __call__(self, data: str) -> Dict[str, Any]: | |||||
"""process the raw input data | |||||
Args: | |||||
data (str): a sentence | |||||
Example: | |||||
'you are so handsome.' | |||||
Returns: | |||||
Dict[str, Any]: the preprocessed data | |||||
""" | |||||
idx = self.text_field.get_ids(data) | |||||
return {'user_idx': idx} |
@@ -0,0 +1,66 @@ | |||||
""" | |||||
Parse argument. | |||||
""" | |||||
import argparse | |||||
import json | |||||
def str2bool(v): | |||||
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |||||
return True | |||||
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |||||
return False | |||||
else: | |||||
raise argparse.ArgumentTypeError('Unsupported value encountered.') | |||||
class HParams(dict): | |||||
""" Hyper-parameters class | |||||
Store hyper-parameters in training / infer / ... scripts. | |||||
""" | |||||
def __getattr__(self, name): | |||||
if name in self.keys(): | |||||
return self[name] | |||||
for v in self.values(): | |||||
if isinstance(v, HParams): | |||||
if name in v: | |||||
return v[name] | |||||
raise AttributeError(f"'HParams' object has no attribute '{name}'") | |||||
def __setattr__(self, name, value): | |||||
self[name] = value | |||||
def save(self, filename): | |||||
with open(filename, 'w', encoding='utf-8') as fp: | |||||
json.dump(self, fp, ensure_ascii=False, indent=4, sort_keys=False) | |||||
def load(self, filename): | |||||
with open(filename, 'r', encoding='utf-8') as fp: | |||||
params_dict = json.load(fp) | |||||
for k, v in params_dict.items(): | |||||
if isinstance(v, dict): | |||||
self[k].update(HParams(v)) | |||||
else: | |||||
self[k] = v | |||||
def parse_args(parser): | |||||
""" Parse hyper-parameters from cmdline. """ | |||||
parsed = parser.parse_args() | |||||
args = HParams() | |||||
optional_args = parser._action_groups[1] | |||||
for action in optional_args._group_actions[1:]: | |||||
arg_name = action.dest | |||||
args[arg_name] = getattr(parsed, arg_name) | |||||
for group in parser._action_groups[2:]: | |||||
group_args = HParams() | |||||
for action in group._group_actions: | |||||
arg_name = action.dest | |||||
group_args[arg_name] = getattr(parsed, arg_name) | |||||
if len(group_args) > 0: | |||||
args[group.title] = group_args | |||||
return args |
@@ -0,0 +1,316 @@ | |||||
import os | |||||
import random | |||||
import sqlite3 | |||||
import json | |||||
from .ontology import all_domains, db_domains | |||||
class MultiWozDB(object): | |||||
def __init__(self, db_dir, db_paths): | |||||
self.dbs = {} | |||||
self.sql_dbs = {} | |||||
for domain in all_domains: | |||||
with open(os.path.join(db_dir, db_paths[domain]), 'r') as f: | |||||
self.dbs[domain] = json.loads(f.read().lower()) | |||||
def oneHotVector(self, domain, num): | |||||
"""Return number of available entities for particular domain.""" | |||||
vector = [0, 0, 0, 0] | |||||
if num == '': | |||||
return vector | |||||
if domain != 'train': | |||||
if num == 0: | |||||
vector = [1, 0, 0, 0] | |||||
elif num == 1: | |||||
vector = [0, 1, 0, 0] | |||||
elif num <= 3: | |||||
vector = [0, 0, 1, 0] | |||||
else: | |||||
vector = [0, 0, 0, 1] | |||||
else: | |||||
if num == 0: | |||||
vector = [1, 0, 0, 0] | |||||
elif num <= 5: | |||||
vector = [0, 1, 0, 0] | |||||
elif num <= 10: | |||||
vector = [0, 0, 1, 0] | |||||
else: | |||||
vector = [0, 0, 0, 1] | |||||
return vector | |||||
def addBookingPointer(self, turn_da): | |||||
"""Add information about availability of the booking option.""" | |||||
# Booking pointer | |||||
# Do not consider booking two things in a single turn. | |||||
vector = [0, 0] | |||||
if turn_da.get('booking-nobook'): | |||||
vector = [1, 0] | |||||
if turn_da.get('booking-book') or turn_da.get('train-offerbooked'): | |||||
vector = [0, 1] | |||||
return vector | |||||
def addDBPointer(self, domain, match_num, return_num=False): | |||||
"""Create database pointer for all related domains.""" | |||||
# if turn_domains is None: | |||||
# turn_domains = db_domains | |||||
if domain in db_domains: | |||||
vector = self.oneHotVector(domain, match_num) | |||||
else: | |||||
vector = [0, 0, 0, 0] | |||||
return vector | |||||
def addDBIndicator(self, domain, match_num, return_num=False): | |||||
"""Create database indicator for all related domains.""" | |||||
# if turn_domains is None: | |||||
# turn_domains = db_domains | |||||
if domain in db_domains: | |||||
vector = self.oneHotVector(domain, match_num) | |||||
else: | |||||
vector = [0, 0, 0, 0] | |||||
# '[db_nores]', '[db_0]', '[db_1]', '[db_2]', '[db_3]' | |||||
if vector == [0, 0, 0, 0]: | |||||
indicator = '[db_nores]' | |||||
else: | |||||
indicator = '[db_%s]' % vector.index(1) | |||||
return indicator | |||||
def get_match_num(self, constraints, return_entry=False): | |||||
"""Create database pointer for all related domains.""" | |||||
match = {'general': ''} | |||||
entry = {} | |||||
# if turn_domains is None: | |||||
# turn_domains = db_domains | |||||
for domain in all_domains: | |||||
match[domain] = '' | |||||
if domain in db_domains and constraints.get(domain): | |||||
matched_ents = self.queryJsons(domain, constraints[domain]) | |||||
match[domain] = len(matched_ents) | |||||
if return_entry: | |||||
entry[domain] = matched_ents | |||||
if return_entry: | |||||
return entry | |||||
return match | |||||
def pointerBack(self, vector, domain): | |||||
# multi domain implementation | |||||
# domnum = cfg.domain_num | |||||
if domain.endswith(']'): | |||||
domain = domain[1:-1] | |||||
if domain != 'train': | |||||
nummap = {0: '0', 1: '1', 2: '2-3', 3: '>3'} | |||||
else: | |||||
nummap = {0: '0', 1: '1-5', 2: '6-10', 3: '>10'} | |||||
if vector[:4] == [0, 0, 0, 0]: | |||||
report = '' | |||||
else: | |||||
num = vector.index(1) | |||||
report = domain + ': ' + nummap[num] + '; ' | |||||
if vector[-2] == 0 and vector[-1] == 1: | |||||
report += 'booking: ok' | |||||
if vector[-2] == 1 and vector[-1] == 0: | |||||
report += 'booking: unable' | |||||
return report | |||||
def queryJsons(self, | |||||
domain, | |||||
constraints, | |||||
exactly_match=True, | |||||
return_name=False): | |||||
"""Returns the list of entities for a given domain | |||||
based on the annotation of the belief state | |||||
constraints: dict e.g. {'pricerange': 'cheap', 'area': 'west'} | |||||
""" | |||||
# query the db | |||||
if domain == 'taxi': | |||||
return [{ | |||||
'taxi_colors': | |||||
random.choice(self.dbs[domain]['taxi_colors']), | |||||
'taxi_types': | |||||
random.choice(self.dbs[domain]['taxi_types']), | |||||
'taxi_phone': [random.randint(1, 9) for _ in range(10)] | |||||
}] | |||||
if domain == 'police': | |||||
return self.dbs['police'] | |||||
if domain == 'hospital': | |||||
if constraints.get('department'): | |||||
for entry in self.dbs['hospital']: | |||||
if entry.get('department') == constraints.get( | |||||
'department'): | |||||
return [entry] | |||||
else: | |||||
return [] | |||||
valid_cons = False | |||||
for v in constraints.values(): | |||||
if v not in ['not mentioned', '']: | |||||
valid_cons = True | |||||
if not valid_cons: | |||||
return [] | |||||
match_result = [] | |||||
if 'name' in constraints: | |||||
for db_ent in self.dbs[domain]: | |||||
if 'name' in db_ent: | |||||
cons = constraints['name'] | |||||
dbn = db_ent['name'] | |||||
if cons == dbn: | |||||
db_ent = db_ent if not return_name else db_ent['name'] | |||||
match_result.append(db_ent) | |||||
return match_result | |||||
for db_ent in self.dbs[domain]: | |||||
match = True | |||||
for s, v in constraints.items(): | |||||
if s == 'name': | |||||
continue | |||||
if s in ['people', 'stay'] or (domain == 'hotel' and s == 'day') or \ | |||||
(domain == 'restaurant' and s in ['day', 'time']): | |||||
# 因为这些inform slot属于book info,而数据库中没有这些slot; | |||||
# 能否book是根据user goal中的信息判断,而非通过数据库查询; | |||||
continue | |||||
skip_case = { | |||||
"don't care": 1, | |||||
"do n't care": 1, | |||||
'dont care': 1, | |||||
'not mentioned': 1, | |||||
'dontcare': 1, | |||||
'': 1 | |||||
} | |||||
if skip_case.get(v): | |||||
continue | |||||
if s not in db_ent: | |||||
# logging.warning('Searching warning: slot %s not in %s db'%(s, domain)) | |||||
match = False | |||||
break | |||||
# v = 'guesthouse' if v == 'guest house' else v | |||||
# v = 'swimmingpool' if v == 'swimming pool' else v | |||||
v = 'yes' if v == 'free' else v | |||||
if s in ['arrive', 'leave']: | |||||
try: | |||||
h, m = v.split( | |||||
':' | |||||
) # raise error if time value is not xx:xx format | |||||
v = int(h) * 60 + int(m) | |||||
except: | |||||
match = False | |||||
break | |||||
time = int(db_ent[s].split(':')[0]) * 60 + int( | |||||
db_ent[s].split(':')[1]) | |||||
if s == 'arrive' and v > time: | |||||
match = False | |||||
if s == 'leave' and v < time: | |||||
match = False | |||||
else: | |||||
if exactly_match and v != db_ent[s]: | |||||
match = False | |||||
break | |||||
elif v not in db_ent[s]: | |||||
match = False | |||||
break | |||||
if match: | |||||
match_result.append(db_ent) | |||||
if not return_name: | |||||
return match_result | |||||
else: | |||||
if domain == 'train': | |||||
match_result = [e['id'] for e in match_result] | |||||
else: | |||||
match_result = [e['name'] for e in match_result] | |||||
return match_result | |||||
def querySQL(self, domain, constraints): | |||||
if not self.sql_dbs: | |||||
for dom in db_domains: | |||||
db = 'db/{}-dbase.db'.format(dom) | |||||
conn = sqlite3.connect(db) | |||||
c = conn.cursor() | |||||
self.sql_dbs[dom] = c | |||||
sql_query = 'select * from {}'.format(domain) | |||||
flag = True | |||||
for key, val in constraints.items(): | |||||
if val == '' or val == 'dontcare' or val == 'not mentioned' or val == "don't care" or val == 'dont care' or val == "do n't care": | |||||
pass | |||||
else: | |||||
if flag: | |||||
sql_query += ' where ' | |||||
val2 = val.replace("'", "''") | |||||
# val2 = normalize(val2) | |||||
if key == 'leaveAt': | |||||
sql_query += r' ' + key + ' > ' + r"'" + val2 + r"'" | |||||
elif key == 'arriveBy': | |||||
sql_query += r' ' + key + ' < ' + r"'" + val2 + r"'" | |||||
else: | |||||
sql_query += r' ' + key + '=' + r"'" + val2 + r"'" | |||||
flag = False | |||||
else: | |||||
val2 = val.replace("'", "''") | |||||
# val2 = normalize(val2) | |||||
if key == 'leaveAt': | |||||
sql_query += r' and ' + key + ' > ' + r"'" + val2 + r"'" | |||||
elif key == 'arriveBy': | |||||
sql_query += r' and ' + key + ' < ' + r"'" + val2 + r"'" | |||||
else: | |||||
sql_query += r' and ' + key + '=' + r"'" + val2 + r"'" | |||||
try: # "select * from attraction where name = 'queens college'" | |||||
print(sql_query) | |||||
return self.sql_dbs[domain].execute(sql_query).fetchall() | |||||
except: | |||||
return [] # TODO test it | |||||
if __name__ == '__main__': | |||||
dbPATHs = { | |||||
'attraction': 'db/attraction_db_processed.json', | |||||
'hospital': 'db/hospital_db_processed.json', | |||||
'hotel': 'db/hotel_db_processed.json', | |||||
'police': 'db/police_db_processed.json', | |||||
'restaurant': 'db/restaurant_db_processed.json', | |||||
'taxi': 'db/taxi_db_processed.json', | |||||
'train': 'db/train_db_processed.json', | |||||
} | |||||
db = MultiWozDB(dbPATHs) | |||||
while True: | |||||
constraints = {} | |||||
inp = input( | |||||
'input belief state in fomat: domain-slot1=value1;slot2=value2...\n' | |||||
) | |||||
domain, cons = inp.split('-') | |||||
for sv in cons.split(';'): | |||||
s, v = sv.split('=') | |||||
constraints[s] = v | |||||
# res = db.querySQL(domain, constraints) | |||||
res = db.queryJsons(domain, constraints, return_name=True) | |||||
report = [] | |||||
reidx = { | |||||
'hotel': 8, | |||||
'restaurant': 6, | |||||
'attraction': 5, | |||||
'train': 1, | |||||
} | |||||
# for ent in res: | |||||
# if reidx.get(domain): | |||||
# report.append(ent[reidx[domain]]) | |||||
# for ent in res: | |||||
# if 'name' in ent: | |||||
# report.append(ent['name']) | |||||
# if 'trainid' in ent: | |||||
# report.append(ent['trainid']) | |||||
print(constraints) | |||||
print(res) | |||||
print('count:', len(res), '\nnames:', report) |
@@ -0,0 +1,210 @@ | |||||
all_domains = [ | |||||
'restaurant', 'hotel', 'attraction', 'train', 'taxi', 'police', 'hospital' | |||||
] | |||||
db_domains = ['restaurant', 'hotel', 'attraction', 'train'] | |||||
normlize_slot_names = { | |||||
'car type': 'car', | |||||
'entrance fee': 'price', | |||||
'duration': 'time', | |||||
'leaveat': 'leave', | |||||
'arriveby': 'arrive', | |||||
'trainid': 'id' | |||||
} | |||||
requestable_slots = { | |||||
'taxi': ['car', 'phone'], | |||||
'police': ['postcode', 'address', 'phone'], | |||||
'hospital': ['address', 'phone', 'postcode'], | |||||
'hotel': [ | |||||
'address', 'postcode', 'internet', 'phone', 'parking', 'type', | |||||
'pricerange', 'stars', 'area', 'reference' | |||||
], | |||||
'attraction': | |||||
['price', 'type', 'address', 'postcode', 'phone', 'area', 'reference'], | |||||
'train': ['time', 'leave', 'price', 'arrive', 'id', 'reference'], | |||||
'restaurant': [ | |||||
'phone', 'postcode', 'address', 'pricerange', 'food', 'area', | |||||
'reference' | |||||
] | |||||
} | |||||
all_reqslot = [ | |||||
'car', 'address', 'postcode', 'phone', 'internet', 'parking', 'type', | |||||
'pricerange', 'food', 'stars', 'area', 'reference', 'time', 'leave', | |||||
'price', 'arrive', 'id' | |||||
] | |||||
informable_slots = { | |||||
'taxi': ['leave', 'destination', 'departure', 'arrive'], | |||||
'police': [], | |||||
'hospital': ['department'], | |||||
'hotel': [ | |||||
'type', 'parking', 'pricerange', 'internet', 'stay', 'day', 'people', | |||||
'area', 'stars', 'name' | |||||
], | |||||
'attraction': ['area', 'type', 'name'], | |||||
'train': ['destination', 'day', 'arrive', 'departure', 'people', 'leave'], | |||||
'restaurant': | |||||
['food', 'pricerange', 'area', 'name', 'time', 'day', 'people'] | |||||
} | |||||
all_infslot = [ | |||||
'type', 'parking', 'pricerange', 'internet', 'stay', 'day', 'people', | |||||
'area', 'stars', 'name', 'leave', 'destination', 'departure', 'arrive', | |||||
'department', 'food', 'time' | |||||
] | |||||
all_slots = all_reqslot + [ | |||||
'stay', 'day', 'people', 'name', 'destination', 'departure', 'department' | |||||
] | |||||
get_slot = {} | |||||
for s in all_slots: | |||||
get_slot[s] = 1 | |||||
# mapping slots in dialogue act to original goal slot names | |||||
da_abbr_to_slot_name = { | |||||
'addr': 'address', | |||||
'fee': 'price', | |||||
'post': 'postcode', | |||||
'ref': 'reference', | |||||
'ticket': 'price', | |||||
'depart': 'departure', | |||||
'dest': 'destination', | |||||
} | |||||
dialog_acts = { | |||||
'restaurant': [ | |||||
'inform', 'request', 'nooffer', 'recommend', 'select', 'offerbook', | |||||
'offerbooked', 'nobook' | |||||
], | |||||
'hotel': [ | |||||
'inform', 'request', 'nooffer', 'recommend', 'select', 'offerbook', | |||||
'offerbooked', 'nobook' | |||||
], | |||||
'attraction': ['inform', 'request', 'nooffer', 'recommend', 'select'], | |||||
'train': | |||||
['inform', 'request', 'nooffer', 'offerbook', 'offerbooked', 'select'], | |||||
'taxi': ['inform', 'request'], | |||||
'police': ['inform', 'request'], | |||||
'hospital': ['inform', 'request'], | |||||
# 'booking': ['book', 'inform', 'nobook', 'request'], | |||||
'general': ['bye', 'greet', 'reqmore', 'welcome'], | |||||
} | |||||
all_acts = [] | |||||
for acts in dialog_acts.values(): | |||||
for act in acts: | |||||
if act not in all_acts: | |||||
all_acts.append(act) | |||||
dialog_act_params = { | |||||
'inform': all_slots + ['choice', 'open'], | |||||
'request': all_infslot + ['choice', 'price'], | |||||
'nooffer': all_slots + ['choice'], | |||||
'recommend': all_reqslot + ['choice', 'open'], | |||||
'select': all_slots + ['choice'], | |||||
# 'book': ['time', 'people', 'stay', 'reference', 'day', 'name', 'choice'], | |||||
'nobook': ['time', 'people', 'stay', 'reference', 'day', 'name', 'choice'], | |||||
'offerbook': all_slots + ['choice'], | |||||
'offerbooked': all_slots + ['choice'], | |||||
'reqmore': [], | |||||
'welcome': [], | |||||
'bye': [], | |||||
'greet': [], | |||||
} | |||||
dialog_act_all_slots = all_slots + ['choice', 'open'] | |||||
# special slot tokens in belief span | |||||
# no need of this, just covert slot to [slot] e.g. pricerange -> [pricerange] | |||||
slot_name_to_slot_token = {} | |||||
# special slot tokens in responses | |||||
# not use at the momoent | |||||
slot_name_to_value_token = { | |||||
# 'entrance fee': '[value_price]', | |||||
# 'pricerange': '[value_price]', | |||||
# 'arriveby': '[value_time]', | |||||
# 'leaveat': '[value_time]', | |||||
# 'departure': '[value_place]', | |||||
# 'destination': '[value_place]', | |||||
# 'stay': 'count', | |||||
# 'people': 'count' | |||||
} | |||||
# eos tokens definition | |||||
eos_tokens = { | |||||
'user': '<eos_u>', | |||||
'user_delex': '<eos_u>', | |||||
'resp': '<eos_r>', | |||||
'resp_gen': '<eos_r>', | |||||
'pv_resp': '<eos_r>', | |||||
'bspn': '<eos_b>', | |||||
'bspn_gen': '<eos_b>', | |||||
'pv_bspn': '<eos_b>', | |||||
'bsdx': '<eos_b>', | |||||
'bsdx_gen': '<eos_b>', | |||||
'pv_bsdx': '<eos_b>', | |||||
'qspn': '<eos_q>', | |||||
'qspn_gen': '<eos_q>', | |||||
'pv_qspn': '<eos_q>', | |||||
'aspn': '<eos_a>', | |||||
'aspn_gen': '<eos_a>', | |||||
'pv_aspn': '<eos_a>', | |||||
'dspn': '<eos_d>', | |||||
'dspn_gen': '<eos_d>', | |||||
'pv_dspn': '<eos_d>' | |||||
} | |||||
# sos tokens definition | |||||
sos_tokens = { | |||||
'user': '<sos_u>', | |||||
'user_delex': '<sos_u>', | |||||
'resp': '<sos_r>', | |||||
'resp_gen': '<sos_r>', | |||||
'pv_resp': '<sos_r>', | |||||
'bspn': '<sos_b>', | |||||
'bspn_gen': '<sos_b>', | |||||
'pv_bspn': '<sos_b>', | |||||
'bsdx': '<sos_b>', | |||||
'bsdx_gen': '<sos_b>', | |||||
'pv_bsdx': '<sos_b>', | |||||
'qspn': '<sos_q>', | |||||
'qspn_gen': '<sos_q>', | |||||
'pv_qspn': '<sos_q>', | |||||
'aspn': '<sos_a>', | |||||
'aspn_gen': '<sos_a>', | |||||
'pv_aspn': '<sos_a>', | |||||
'dspn': '<sos_d>', | |||||
'dspn_gen': '<sos_d>', | |||||
'pv_dspn': '<sos_d>' | |||||
} | |||||
# db tokens definition | |||||
db_tokens = [ | |||||
'<sos_db>', '<eos_db>', '[book_nores]', '[book_fail]', '[book_success]', | |||||
'[db_nores]', '[db_0]', '[db_1]', '[db_2]', '[db_3]' | |||||
] | |||||
# understand tokens definition | |||||
def get_understand_tokens(prompt_num_for_understand): | |||||
understand_tokens = [] | |||||
for i in range(prompt_num_for_understand): | |||||
understand_tokens.append(f'<understand_{i}>') | |||||
return understand_tokens | |||||
# policy tokens definition | |||||
def get_policy_tokens(prompt_num_for_policy): | |||||
policy_tokens = [] | |||||
for i in range(prompt_num_for_policy): | |||||
policy_tokens.append(f'<policy_{i}>') | |||||
return policy_tokens | |||||
# all special tokens definition | |||||
def get_special_tokens(other_tokens): | |||||
special_tokens = ['<go_r>', '<go_b>', '<go_a>', '<go_d>', | |||||
'<eos_u>', '<eos_r>', '<eos_b>', '<eos_a>', '<eos_d>', '<eos_q>', | |||||
'<sos_u>', '<sos_r>', '<sos_b>', '<sos_a>', '<sos_d>', '<sos_q>'] \ | |||||
+ db_tokens + other_tokens | |||||
return special_tokens |
@@ -0,0 +1,6 @@ | |||||
def hierarchical_set_score(frame1, frame2): | |||||
# deal with empty frame | |||||
if not (frame1 and frame2): | |||||
return 0. | |||||
pass | |||||
return 0. |
@@ -0,0 +1,180 @@ | |||||
import logging | |||||
from collections import OrderedDict | |||||
import json | |||||
import numpy as np | |||||
from . import ontology | |||||
def clean_replace(s, r, t, forward=True, backward=False): | |||||
def clean_replace_single(s, r, t, forward, backward, sidx=0): | |||||
# idx = s[sidx:].find(r) | |||||
idx = s.find(r) | |||||
if idx == -1: | |||||
return s, -1 | |||||
idx_r = idx + len(r) | |||||
if backward: | |||||
while idx > 0 and s[idx - 1]: | |||||
idx -= 1 | |||||
elif idx > 0 and s[idx - 1] != ' ': | |||||
return s, -1 | |||||
if forward: | |||||
while idx_r < len(s) and (s[idx_r].isalpha() | |||||
or s[idx_r].isdigit()): | |||||
idx_r += 1 | |||||
elif idx_r != len(s) and (s[idx_r].isalpha() or s[idx_r].isdigit()): | |||||
return s, -1 | |||||
return s[:idx] + t + s[idx_r:], idx_r | |||||
# source, replace, target = s, r, t | |||||
# count = 0 | |||||
sidx = 0 | |||||
while sidx != -1: | |||||
s, sidx = clean_replace_single(s, r, t, forward, backward, sidx) | |||||
# count += 1 | |||||
# print(s, sidx) | |||||
# if count == 20: | |||||
# print(source, '\n', replace, '\n', target) | |||||
# quit() | |||||
return s | |||||
def py2np(list): | |||||
return np.array(list) | |||||
def write_dict(fn, dic): | |||||
with open(fn, 'w') as f: | |||||
json.dump(dic, f, indent=2) | |||||
def f1_score(label_list, pred_list): | |||||
tp = len([t for t in pred_list if t in label_list]) | |||||
fp = max(0, len(pred_list) - tp) | |||||
fn = max(0, len(label_list) - tp) | |||||
precision = tp / (tp + fp + 1e-10) | |||||
recall = tp / (tp + fn + 1e-10) | |||||
f1 = 2 * precision * recall / (precision + recall + 1e-10) | |||||
return f1 | |||||
class MultiWOZVocab(object): | |||||
def __init__(self, vocab_size=0): | |||||
""" | |||||
vocab for multiwoz dataset | |||||
""" | |||||
self.vocab_size = vocab_size | |||||
self.vocab_size_oov = 0 # get after construction | |||||
self._idx2word = {} # word + oov | |||||
self._word2idx = {} # word | |||||
self._freq_dict = {} # word + oov | |||||
for w in [ | |||||
'[PAD]', '<go_r>', '[UNK]', '<go_b>', '<go_a>', '<eos_u>', | |||||
'<eos_r>', '<eos_b>', '<eos_a>', '<go_d>', '<eos_d>' | |||||
]: | |||||
self._absolute_add_word(w) | |||||
def _absolute_add_word(self, w): | |||||
idx = len(self._idx2word) | |||||
self._idx2word[idx] = w | |||||
self._word2idx[w] = idx | |||||
def add_word(self, word): | |||||
if word not in self._freq_dict: | |||||
self._freq_dict[word] = 0 | |||||
self._freq_dict[word] += 1 | |||||
def has_word(self, word): | |||||
return self._freq_dict.get(word) | |||||
def _add_to_vocab(self, word): | |||||
if word not in self._word2idx: | |||||
idx = len(self._idx2word) | |||||
self._idx2word[idx] = word | |||||
self._word2idx[word] = idx | |||||
def construct(self): | |||||
l = sorted(self._freq_dict.keys(), key=lambda x: -self._freq_dict[x]) | |||||
print('Vocabulary size including oov: %d' % | |||||
(len(l) + len(self._idx2word))) | |||||
if len(l) + len(self._idx2word) < self.vocab_size: | |||||
logging.warning( | |||||
'actual label set smaller than that configured: {}/{}'.format( | |||||
len(l) + len(self._idx2word), self.vocab_size)) | |||||
for word in ontology.all_domains + ['general']: | |||||
word = '[' + word + ']' | |||||
self._add_to_vocab(word) | |||||
for word in ontology.all_acts: | |||||
word = '[' + word + ']' | |||||
self._add_to_vocab(word) | |||||
for word in ontology.all_slots: | |||||
self._add_to_vocab(word) | |||||
for word in l: | |||||
if word.startswith('[value_') and word.endswith(']'): | |||||
self._add_to_vocab(word) | |||||
for word in l: | |||||
self._add_to_vocab(word) | |||||
self.vocab_size_oov = len(self._idx2word) | |||||
def load_vocab(self, vocab_path): | |||||
self._freq_dict = json.loads( | |||||
open(vocab_path + '.freq.json', 'r').read()) | |||||
self._word2idx = json.loads( | |||||
open(vocab_path + '.word2idx.json', 'r').read()) | |||||
self._idx2word = {} | |||||
for w, idx in self._word2idx.items(): | |||||
self._idx2word[idx] = w | |||||
self.vocab_size_oov = len(self._idx2word) | |||||
print('vocab file loaded from "' + vocab_path + '"') | |||||
print('Vocabulary size including oov: %d' % (self.vocab_size_oov)) | |||||
def save_vocab(self, vocab_path): | |||||
_freq_dict = OrderedDict( | |||||
sorted( | |||||
self._freq_dict.items(), key=lambda kv: kv[1], reverse=True)) | |||||
write_dict(vocab_path + '.word2idx.json', self._word2idx) | |||||
write_dict(vocab_path + '.freq.json', _freq_dict) | |||||
def encode(self, word, include_oov=True): | |||||
if include_oov: | |||||
if self._word2idx.get(word, None) is None: | |||||
raise ValueError( | |||||
'Unknown word: %s. Vocabulary should include oovs here.' % | |||||
word) | |||||
return self._word2idx[word] | |||||
else: | |||||
word = '<unk>' if word not in self._word2idx else word | |||||
return self._word2idx[word] | |||||
def sentence_encode(self, word_list): | |||||
return [self.encode(_) for _ in word_list] | |||||
def oov_idx_map(self, idx): | |||||
return 2 if idx > self.vocab_size else idx | |||||
def sentence_oov_map(self, index_list): | |||||
return [self.oov_idx_map(_) for _ in index_list] | |||||
def decode(self, idx, indicate_oov=False): | |||||
if not self._idx2word.get(idx): | |||||
raise ValueError( | |||||
'Error idx: %d. Vocabulary should include oovs here.' % idx) | |||||
if not indicate_oov or idx < self.vocab_size: | |||||
return self._idx2word[idx] | |||||
else: | |||||
return self._idx2word[idx] + '(o)' | |||||
def sentence_decode(self, index_list, eos=None, indicate_oov=False): | |||||
l = [self.decode(_, indicate_oov) for _ in index_list] | |||||
if not eos or eos not in l: | |||||
return ' '.join(l) | |||||
else: | |||||
idx = l.index(eos) | |||||
return ' '.join(l[:idx]) | |||||
def nl_decode(self, l, eos=None): | |||||
return [self.sentence_decode(_, eos) + '\n' for _ in l] |
@@ -0,0 +1,2 @@ | |||||
spacy==2.3.5 | |||||
# python -m spacy download en_core_web_sm |
@@ -0,0 +1,76 @@ | |||||
test_case = { | |||||
'sng0073': { | |||||
'goal': { | |||||
'taxi': { | |||||
'info': { | |||||
'leaveat': '17:15', | |||||
'destination': 'pizza hut fen ditton', | |||||
'departure': "saint john's college" | |||||
}, | |||||
'reqt': ['car', 'phone'], | |||||
'fail_info': {} | |||||
} | |||||
}, | |||||
'log': [{ | |||||
'user': | |||||
"i would like a taxi from saint john 's college to pizza hut fen ditton .", | |||||
'user_delex': | |||||
'i would like a taxi from [value_departure] to [value_destination] .', | |||||
'resp': | |||||
'what time do you want to leave and what time do you want to arrive by ?', | |||||
'sys': | |||||
'what time do you want to leave and what time do you want to arrive by ?', | |||||
'pointer': '0,0,0,0,0,0', | |||||
'match': '', | |||||
'constraint': | |||||
"[taxi] destination pizza hut fen ditton departure saint john 's college", | |||||
'cons_delex': '[taxi] destination departure', | |||||
'sys_act': '[taxi] [request] leave arrive', | |||||
'turn_num': 0, | |||||
'turn_domain': '[taxi]' | |||||
}, { | |||||
'user': 'i want to leave after 17:15 .', | |||||
'user_delex': 'i want to leave after [value_leave] .', | |||||
'resp': | |||||
'booking completed ! your taxi will be [value_car] contact number is [value_phone]', | |||||
'sys': | |||||
'booking completed ! your taxi will be blue honda contact number is 07218068540', | |||||
'pointer': '0,0,0,0,0,0', | |||||
'match': '', | |||||
'constraint': | |||||
"[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||||
'cons_delex': '[taxi] destination departure leave', | |||||
'sys_act': '[taxi] [inform] car phone', | |||||
'turn_num': 1, | |||||
'turn_domain': '[taxi]' | |||||
}, { | |||||
'user': 'thank you for all the help ! i appreciate it .', | |||||
'user_delex': 'thank you for all the help ! i appreciate it .', | |||||
'resp': | |||||
'you are welcome . is there anything else i can help you with today ?', | |||||
'sys': | |||||
'you are welcome . is there anything else i can help you with today ?', | |||||
'pointer': '0,0,0,0,0,0', | |||||
'match': '', | |||||
'constraint': | |||||
"[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||||
'cons_delex': '[taxi] destination departure leave', | |||||
'sys_act': '[general] [reqmore]', | |||||
'turn_num': 2, | |||||
'turn_domain': '[general]' | |||||
}, { | |||||
'user': 'no , i am all set . have a nice day . bye .', | |||||
'user_delex': 'no , i am all set . have a nice day . bye .', | |||||
'resp': 'you too ! thank you', | |||||
'sys': 'you too ! thank you', | |||||
'pointer': '0,0,0,0,0,0', | |||||
'match': '', | |||||
'constraint': | |||||
"[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||||
'cons_delex': '[taxi] destination departure leave', | |||||
'sys_act': '[general] [bye]', | |||||
'turn_num': 3, | |||||
'turn_domain': '[general]' | |||||
}] | |||||
} | |||||
} |
@@ -37,30 +37,31 @@ dialog_case = [{ | |||||
}] | }] | ||||
def merge(info, result): | |||||
return info | |||||
class DialogGenerationTest(unittest.TestCase): | class DialogGenerationTest(unittest.TestCase): | ||||
def test_run(self): | def test_run(self): | ||||
for item in dialog_case: | |||||
q = item['user'] | |||||
a = item['sys'] | |||||
print('user:{}'.format(q)) | |||||
print('sys:{}'.format(a)) | |||||
# preprocessor = DialogGenerationPreprocessor() | |||||
# # data = DialogGenerationData() | |||||
# model = DialogGenerationModel(path, preprocessor.tokenizer) | |||||
# pipeline = DialogGenerationPipeline(model, preprocessor) | |||||
# | |||||
# history_dialog = [] | |||||
# for item in dialog_case: | |||||
# user_question = item['user'] | |||||
# print('user: {}'.format(user_question)) | |||||
# | |||||
# pipeline(user_question) | |||||
# | |||||
# sys_answer, history_dialog = pipeline() | |||||
# | |||||
# print('sys : {}'.format(sys_answer)) | |||||
modeldir = '/Users/yangliu/Desktop/space-dialog-generation' | |||||
preprocessor = DialogGenerationPreprocessor() | |||||
model = DialogGenerationModel( | |||||
model_dir=modeldir, preprocessor.tokenizer) | |||||
pipeline = DialogGenerationPipeline(model, preprocessor) | |||||
history_dialog = {} | |||||
for step in range(0, len(dialog_case)): | |||||
user_question = dialog_case[step]['user'] | |||||
print('user: {}'.format(user_question)) | |||||
history_dialog_info = merge(history_dialog_info, | |||||
result) if step > 0 else {} | |||||
result = pipeline(user_question, history=history_dialog_info) | |||||
print('sys : {}'.format(result['pred_answer'])) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
@@ -0,0 +1,25 @@ | |||||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||||
import unittest | |||||
from tests.case.nlp.dialog_generation_case import test_case | |||||
from maas_lib.preprocessors import DialogGenerationPreprocessor | |||||
from maas_lib.utils.constant import Fields, InputFields | |||||
from maas_lib.utils.logger import get_logger | |||||
logger = get_logger() | |||||
class DialogGenerationPreprocessorTest(unittest.TestCase): | |||||
def test_tokenize(self): | |||||
modeldir = '/Users/yangliu/Desktop/space-dialog-generation' | |||||
processor = DialogGenerationPreprocessor(model_dir=modeldir) | |||||
for item in test_case['sng0073']['log']: | |||||
print(processor(item['user'])) | |||||
if __name__ == '__main__': | |||||
unittest.main() |