|
|
@@ -0,0 +1,358 @@ |
|
|
|
""" HandStatic |
|
|
|
The implementation here is modified based on MobileFaceNet, |
|
|
|
originally Apache 2.0 License and publicly avaialbe at https://github.com/xuexingyu24/MobileFaceNet_Tutorial_Pytorch |
|
|
|
""" |
|
|
|
|
|
|
|
import os |
|
|
|
|
|
|
|
import torch |
|
|
|
import torch.nn as nn |
|
|
|
import torchvision |
|
|
|
import torchvision.models as models |
|
|
|
from torch.nn import (AdaptiveAvgPool2d, BatchNorm1d, BatchNorm2d, Conv2d, |
|
|
|
Dropout, Linear, MaxPool2d, Module, PReLU, ReLU, |
|
|
|
Sequential, Sigmoid) |
|
|
|
|
|
|
|
|
|
|
|
class StaticGestureNet(torch.nn.Module): |
|
|
|
|
|
|
|
def __init__(self, train=True): |
|
|
|
super().__init__() |
|
|
|
|
|
|
|
model = MobileFaceNet(512) |
|
|
|
self.feature_extractor = model |
|
|
|
self.fc_layer = torch.nn.Sequential( |
|
|
|
nn.Linear(512, 128), nn.Softplus(), nn.Linear(128, 15)) |
|
|
|
self.sigmoid = nn.Sigmoid() |
|
|
|
|
|
|
|
def forward(self, inputs): |
|
|
|
out = self.feature_extractor(inputs) |
|
|
|
out = self.fc_layer(out) |
|
|
|
out = self.sigmoid(out) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class Flatten(Module): |
|
|
|
|
|
|
|
def forward(self, input): |
|
|
|
return input.view(input.size(0), -1) |
|
|
|
|
|
|
|
|
|
|
|
def l2_norm(input, axis=1): |
|
|
|
norm = torch.norm(input, 2, axis, True) |
|
|
|
output = torch.div(input, norm) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
class SEModule(Module): |
|
|
|
|
|
|
|
def __init__(self, channels, reduction): |
|
|
|
super(SEModule, self).__init__() |
|
|
|
self.avg_pool = AdaptiveAvgPool2d(1) |
|
|
|
self.fc1 = Conv2d( |
|
|
|
channels, |
|
|
|
channels // reduction, |
|
|
|
kernel_size=1, |
|
|
|
padding=0, |
|
|
|
bias=False) |
|
|
|
self.relu = ReLU(inplace=True) |
|
|
|
self.fc2 = Conv2d( |
|
|
|
channels // reduction, |
|
|
|
channels, |
|
|
|
kernel_size=1, |
|
|
|
padding=0, |
|
|
|
bias=False) |
|
|
|
self.sigmoid = Sigmoid() |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
module_input = x |
|
|
|
x = self.avg_pool(x) |
|
|
|
x = self.fc1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.fc2(x) |
|
|
|
x = self.sigmoid(x) |
|
|
|
return module_input * x |
|
|
|
|
|
|
|
|
|
|
|
class BottleneckIR(Module): |
|
|
|
|
|
|
|
def __init__(self, in_channel, depth, stride): |
|
|
|
super(BottleneckIR, self).__init__() |
|
|
|
if in_channel == depth: |
|
|
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
|
|
else: |
|
|
|
self.shortcut_layer = Sequential( |
|
|
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
|
|
BatchNorm2d(depth)) |
|
|
|
self.res_layer = Sequential( |
|
|
|
BatchNorm2d(in_channel), |
|
|
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
|
|
PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
|
|
BatchNorm2d(depth)) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
shortcut = self.shortcut_layer(x) |
|
|
|
res = self.res_layer(x) |
|
|
|
return res + shortcut |
|
|
|
|
|
|
|
|
|
|
|
class BottleneckIRSE(Module): |
|
|
|
|
|
|
|
def __init__(self, in_channel, depth, stride): |
|
|
|
super(BottleneckIRSE, self).__init__() |
|
|
|
if in_channel == depth: |
|
|
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
|
|
else: |
|
|
|
self.shortcut_layer = Sequential( |
|
|
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
|
|
BatchNorm2d(depth)) |
|
|
|
self.res_layer = Sequential( |
|
|
|
BatchNorm2d(in_channel), |
|
|
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
|
|
PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
|
|
BatchNorm2d(depth), SEModule(depth, 16)) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
shortcut = self.shortcut_layer(x) |
|
|
|
res = self.res_layer(x) |
|
|
|
return res + shortcut |
|
|
|
|
|
|
|
|
|
|
|
def get_block(in_channel, depth, num_units, stride=2): |
|
|
|
return [Bottleneck(in_channel, depth, stride) |
|
|
|
] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)] |
|
|
|
|
|
|
|
|
|
|
|
def get_blocks(num_layers): |
|
|
|
if num_layers == 50: |
|
|
|
blocks = [ |
|
|
|
get_block(in_channel=64, depth=64, num_units=3), |
|
|
|
get_block(in_channel=64, depth=128, num_units=4), |
|
|
|
get_block(in_channel=128, depth=256, num_units=14), |
|
|
|
get_block(in_channel=256, depth=512, num_units=3) |
|
|
|
] |
|
|
|
elif num_layers == 100: |
|
|
|
blocks = [ |
|
|
|
get_block(in_channel=64, depth=64, num_units=3), |
|
|
|
get_block(in_channel=64, depth=128, num_units=13), |
|
|
|
get_block(in_channel=128, depth=256, num_units=30), |
|
|
|
get_block(in_channel=256, depth=512, num_units=3) |
|
|
|
] |
|
|
|
elif num_layers == 152: |
|
|
|
blocks = [ |
|
|
|
get_block(in_channel=64, depth=64, num_units=3), |
|
|
|
get_block(in_channel=64, depth=128, num_units=8), |
|
|
|
get_block(in_channel=128, depth=256, num_units=36), |
|
|
|
get_block(in_channel=256, depth=512, num_units=3) |
|
|
|
] |
|
|
|
return blocks |
|
|
|
|
|
|
|
|
|
|
|
class Backbone(Module): |
|
|
|
|
|
|
|
def __init__(self, num_layers, drop_ratio, mode='ir'): |
|
|
|
super(Backbone, self).__init__() |
|
|
|
assert num_layers in [50, 100, |
|
|
|
152], 'num_layers should be 50,100, or 152' |
|
|
|
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' |
|
|
|
blocks = get_blocks(num_layers) |
|
|
|
if mode == 'ir': |
|
|
|
unit_module = BottleneckIR |
|
|
|
elif mode == 'ir_se': |
|
|
|
unit_module = BottleneckIRSE |
|
|
|
self.input_layer = Sequential( |
|
|
|
Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), |
|
|
|
PReLU(64)) |
|
|
|
self.output_layer = Sequential( |
|
|
|
BatchNorm2d(512), Dropout(drop_ratio), Flatten(), |
|
|
|
Linear(512 * 7 * 7, 512), BatchNorm1d(512)) |
|
|
|
modules = [] |
|
|
|
for block in blocks: |
|
|
|
for bottleneck in block: |
|
|
|
modules.append( |
|
|
|
unit_module(bottleneck.in_channel, bottleneck.depth, |
|
|
|
bottleneck.stride)) |
|
|
|
self.body = Sequential(*modules) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
x = self.input_layer(x) |
|
|
|
x = self.body(x) |
|
|
|
x = self.output_layer(x) |
|
|
|
return l2_norm(x) |
|
|
|
|
|
|
|
|
|
|
|
class ConvBlock(Module): |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
in_c, |
|
|
|
out_c, |
|
|
|
kernel=(1, 1), |
|
|
|
stride=(1, 1), |
|
|
|
padding=(0, 0), |
|
|
|
groups=1): |
|
|
|
super(ConvBlock, self).__init__() |
|
|
|
self.conv = Conv2d( |
|
|
|
in_c, |
|
|
|
out_channels=out_c, |
|
|
|
kernel_size=kernel, |
|
|
|
groups=groups, |
|
|
|
stride=stride, |
|
|
|
padding=padding, |
|
|
|
bias=False) |
|
|
|
self.bn = BatchNorm2d(out_c) |
|
|
|
self.prelu = PReLU(out_c) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
x = self.conv(x) |
|
|
|
x = self.bn(x) |
|
|
|
x = self.prelu(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class LinearBlock(Module): |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
in_c, |
|
|
|
out_c, |
|
|
|
kernel=(1, 1), |
|
|
|
stride=(1, 1), |
|
|
|
padding=(0, 0), |
|
|
|
groups=1): |
|
|
|
super(LinearBlock, self).__init__() |
|
|
|
self.conv = Conv2d( |
|
|
|
in_c, |
|
|
|
out_channels=out_c, |
|
|
|
kernel_size=kernel, |
|
|
|
groups=groups, |
|
|
|
stride=stride, |
|
|
|
padding=padding, |
|
|
|
bias=False) |
|
|
|
self.bn = BatchNorm2d(out_c) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
x = self.conv(x) |
|
|
|
x = self.bn(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class DepthWise(Module): |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
in_c, |
|
|
|
out_c, |
|
|
|
residual=False, |
|
|
|
kernel=(3, 3), |
|
|
|
stride=(2, 2), |
|
|
|
padding=(1, 1), |
|
|
|
groups=1): |
|
|
|
super(DepthWise, self).__init__() |
|
|
|
self.conv = ConvBlock( |
|
|
|
in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)) |
|
|
|
self.conv_dw = ConvBlock( |
|
|
|
groups, |
|
|
|
groups, |
|
|
|
groups=groups, |
|
|
|
kernel=kernel, |
|
|
|
padding=padding, |
|
|
|
stride=stride) |
|
|
|
self.project = LinearBlock( |
|
|
|
groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1)) |
|
|
|
self.residual = residual |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
if self.residual: |
|
|
|
short_cut = x |
|
|
|
x = self.conv(x) |
|
|
|
x = self.conv_dw(x) |
|
|
|
x = self.project(x) |
|
|
|
if self.residual: |
|
|
|
output = short_cut + x |
|
|
|
else: |
|
|
|
output = x |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
class Residual(Module): |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
c, |
|
|
|
num_block, |
|
|
|
groups, |
|
|
|
kernel=(3, 3), |
|
|
|
stride=(1, 1), |
|
|
|
padding=(1, 1)): |
|
|
|
super(Residual, self).__init__() |
|
|
|
modules = [] |
|
|
|
for _ in range(num_block): |
|
|
|
modules.append( |
|
|
|
DepthWise( |
|
|
|
c, |
|
|
|
c, |
|
|
|
residual=True, |
|
|
|
kernel=kernel, |
|
|
|
padding=padding, |
|
|
|
stride=stride, |
|
|
|
groups=groups)) |
|
|
|
self.model = Sequential(*modules) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
return self.model(x) |
|
|
|
|
|
|
|
|
|
|
|
class MobileFaceNet(Module): |
|
|
|
|
|
|
|
def __init__(self, embedding_size): |
|
|
|
super(MobileFaceNet, self).__init__() |
|
|
|
self.conv1 = ConvBlock( |
|
|
|
3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1)) |
|
|
|
self.conv2_dw = ConvBlock( |
|
|
|
64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) |
|
|
|
self.conv_23 = DepthWise( |
|
|
|
64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128) |
|
|
|
self.conv_3 = Residual( |
|
|
|
64, |
|
|
|
num_block=4, |
|
|
|
groups=128, |
|
|
|
kernel=(3, 3), |
|
|
|
stride=(1, 1), |
|
|
|
padding=(1, 1)) |
|
|
|
self.conv_34 = DepthWise( |
|
|
|
64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256) |
|
|
|
self.conv_4 = Residual( |
|
|
|
128, |
|
|
|
num_block=6, |
|
|
|
groups=256, |
|
|
|
kernel=(3, 3), |
|
|
|
stride=(1, 1), |
|
|
|
padding=(1, 1)) |
|
|
|
self.conv_45 = DepthWise( |
|
|
|
128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512) |
|
|
|
self.conv_5 = Residual( |
|
|
|
128, |
|
|
|
num_block=2, |
|
|
|
groups=256, |
|
|
|
kernel=(3, 3), |
|
|
|
stride=(1, 1), |
|
|
|
padding=(1, 1)) |
|
|
|
self.conv_6_sep = ConvBlock( |
|
|
|
128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0)) |
|
|
|
self.conv_6_dw = LinearBlock( |
|
|
|
512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)) |
|
|
|
self.conv_6_flatten = Flatten() |
|
|
|
self.linear = Linear(512, embedding_size, bias=False) |
|
|
|
self.bn = BatchNorm1d(embedding_size) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
out = self.conv1(x) |
|
|
|
out = self.conv2_dw(out) |
|
|
|
out = self.conv_23(out) |
|
|
|
out = self.conv_3(out) |
|
|
|
out = self.conv_34(out) |
|
|
|
out = self.conv_4(out) |
|
|
|
out = self.conv_45(out) |
|
|
|
out = self.conv_5(out) |
|
|
|
out = self.conv_6_sep(out) |
|
|
|
out = self.conv_6_dw(out) |
|
|
|
out = self.conv_6_flatten(out) |
|
|
|
out = self.linear(out) |
|
|
|
return l2_norm(out) |