@@ -46,6 +46,10 @@ class Pipelines(object): | |||||
word_segmentation = 'word-segmentation' | word_segmentation = 'word-segmentation' | ||||
text_generation = 'text-generation' | text_generation = 'text-generation' | ||||
sentiment_analysis = 'sentiment-analysis' | sentiment_analysis = 'sentiment-analysis' | ||||
sentiment_classification = "sentiment-classification" | |||||
zero_shot_classification = "zero-shot-classification" | |||||
fill_mask = "fill-mask" | |||||
nli = "nli" | |||||
# audio tasks | # audio tasks | ||||
sambert_hifigan_16k_tts = 'sambert-hifigan-16k-tts' | sambert_hifigan_16k_tts = 'sambert-hifigan-16k-tts' | ||||
@@ -85,10 +89,10 @@ class Preprocessors(object): | |||||
# nlp preprocessor | # nlp preprocessor | ||||
bert_seq_cls_tokenizer = 'bert-seq-cls-tokenizer' | bert_seq_cls_tokenizer = 'bert-seq-cls-tokenizer' | ||||
palm_text_gen_tokenizer = 'palm-text-gen-tokenizer' | palm_text_gen_tokenizer = 'palm-text-gen-tokenizer' | ||||
sbert_token_cls_tokenizer = 'sbert-token-cls-tokenizer' | |||||
sbert_nli_tokenizer = 'sbert-nli-tokenizer' | |||||
sbert_sen_cls_tokenizer = 'sbert-sen-cls-tokenizer' | |||||
sbert_zero_shot_cls_tokenizer = 'sbert-zero-shot-cls-tokenizer' | |||||
token_cls_tokenizer = 'token-cls-tokenizer' | |||||
nli_tokenizer = 'nli-tokenizer' | |||||
sen_cls_tokenizer = 'sen-cls-tokenizer' | |||||
zero_shot_cls_tokenizer = 'zero-shot-cls-tokenizer' | |||||
# audio preprocessor | # audio preprocessor | ||||
linear_aec_fbank = 'linear-aec-fbank' | linear_aec_fbank = 'linear-aec-fbank' | ||||
@@ -19,6 +19,12 @@ class MaskedLMModelBase(Model): | |||||
def build_model(self): | def build_model(self): | ||||
raise NotImplementedError() | raise NotImplementedError() | ||||
@property | |||||
def config(self): | |||||
if hasattr(self.model, "config"): | |||||
return self.model.config | |||||
return None | |||||
def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, np.ndarray]: | def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, np.ndarray]: | ||||
"""return the result by the model | """return the result by the model | ||||
@@ -1,4 +1,4 @@ | |||||
from modelscope.utils.constant import Tasks | |||||
from ...utils.constant import Tasks | |||||
from .sbert_for_sequence_classification import SbertForSequenceClassificationBase | from .sbert_for_sequence_classification import SbertForSequenceClassificationBase | ||||
from ..builder import MODELS | from ..builder import MODELS | ||||
from ...metainfo import Models | from ...metainfo import Models | ||||
@@ -2,18 +2,17 @@ from typing import Any, Dict, Union | |||||
import numpy as np | import numpy as np | ||||
import torch | import torch | ||||
from sofa import SbertConfig, SbertForTokenClassification | |||||
from modelscope.metainfo import Models | from modelscope.metainfo import Models | ||||
from modelscope.utils.constant import Tasks | from modelscope.utils.constant import Tasks | ||||
from ..base import Model, Tensor | from ..base import Model, Tensor | ||||
from ..builder import MODELS | from ..builder import MODELS | ||||
__all__ = ['StructBertForTokenClassification'] | |||||
__all__ = ['SbertForTokenClassification'] | |||||
@MODELS.register_module(Tasks.word_segmentation, module_name=Models.structbert) | @MODELS.register_module(Tasks.word_segmentation, module_name=Models.structbert) | ||||
class StructBertForTokenClassification(Model): | |||||
class SbertForTokenClassification(Model): | |||||
def __init__(self, model_dir: str, *args, **kwargs): | def __init__(self, model_dir: str, *args, **kwargs): | ||||
"""initialize the word segmentation model from the `model_dir` path. | """initialize the word segmentation model from the `model_dir` path. | ||||
@@ -25,6 +24,7 @@ class StructBertForTokenClassification(Model): | |||||
""" | """ | ||||
super().__init__(model_dir, *args, **kwargs) | super().__init__(model_dir, *args, **kwargs) | ||||
self.model_dir = model_dir | self.model_dir = model_dir | ||||
from sofa import SbertConfig, SbertForTokenClassification | |||||
self.model = SbertForTokenClassification.from_pretrained( | self.model = SbertForTokenClassification.from_pretrained( | ||||
self.model_dir) | self.model_dir) | ||||
self.config = SbertConfig.from_pretrained(self.model_dir) | self.config = SbertConfig.from_pretrained(self.model_dir) | ||||
@@ -1,38 +1,41 @@ | |||||
from typing import Dict, Optional, Union | from typing import Dict, Optional, Union | ||||
from modelscope.models import Model | |||||
from modelscope.models.nlp.masked_language_model import \ | |||||
AliceMindBaseForMaskedLM | |||||
from modelscope.preprocessors import FillMaskPreprocessor | |||||
from modelscope.utils.constant import Tasks | |||||
from ...models import Model | |||||
from ...models.nlp.masked_language_model import \ | |||||
MaskedLMModelBase | |||||
from ...preprocessors import FillMaskPreprocessor | |||||
from ...utils.constant import Tasks | |||||
from ..base import Pipeline, Tensor | from ..base import Pipeline, Tensor | ||||
from ..builder import PIPELINES | from ..builder import PIPELINES | ||||
from ...metainfo import Pipelines | |||||
__all__ = ['FillMaskPipeline'] | __all__ = ['FillMaskPipeline'] | ||||
@PIPELINES.register_module(Tasks.fill_mask, module_name=r'sbert') | |||||
@PIPELINES.register_module(Tasks.fill_mask, module_name=r'veco') | |||||
@PIPELINES.register_module(Tasks.fill_mask, module_name=Pipelines.fill_mask) | |||||
class FillMaskPipeline(Pipeline): | class FillMaskPipeline(Pipeline): | ||||
def __init__(self, | def __init__(self, | ||||
model: Union[AliceMindBaseForMaskedLM, str], | |||||
model: Union[MaskedLMModelBase, str], | |||||
preprocessor: Optional[FillMaskPreprocessor] = None, | preprocessor: Optional[FillMaskPreprocessor] = None, | ||||
first_sequence="sentense", | |||||
**kwargs): | **kwargs): | ||||
"""use `model` and `preprocessor` to create a nlp fill mask pipeline for prediction | """use `model` and `preprocessor` to create a nlp fill mask pipeline for prediction | ||||
Args: | Args: | ||||
model (AliceMindBaseForMaskedLM): a model instance | |||||
model (MaskedLMModelBase): a model instance | |||||
preprocessor (FillMaskPreprocessor): a preprocessor instance | preprocessor (FillMaskPreprocessor): a preprocessor instance | ||||
""" | """ | ||||
fill_mask_model = model if isinstance( | fill_mask_model = model if isinstance( | ||||
model, AliceMindBaseForMaskedLM) else Model.from_pretrained(model) | |||||
model, MaskedLMModelBase) else Model.from_pretrained(model) | |||||
assert fill_mask_model.config is not None | |||||
if preprocessor is None: | if preprocessor is None: | ||||
preprocessor = FillMaskPreprocessor( | preprocessor = FillMaskPreprocessor( | ||||
fill_mask_model.model_dir, | fill_mask_model.model_dir, | ||||
first_sequence='sentence', | |||||
first_sequence=first_sequence, | |||||
second_sequence=None) | second_sequence=None) | ||||
super().__init__(model=model, preprocessor=preprocessor, **kwargs) | |||||
super().__init__(model=fill_mask_model, preprocessor=preprocessor, **kwargs) | |||||
self.preprocessor = preprocessor | self.preprocessor = preprocessor | ||||
self.tokenizer = preprocessor.tokenizer | self.tokenizer = preprocessor.tokenizer | ||||
self.mask_id = {'veco': 250001, 'sbert': 103} | self.mask_id = {'veco': 250001, 'sbert': 103} | ||||
@@ -82,6 +85,7 @@ class FillMaskPipeline(Pipeline): | |||||
pred_strings = [] | pred_strings = [] | ||||
for ids in rst_ids: # batch | for ids in rst_ids: # batch | ||||
# TODO vocab size is not stable | |||||
if self.model.config.vocab_size == 21128: # zh bert | if self.model.config.vocab_size == 21128: # zh bert | ||||
pred_string = self.tokenizer.convert_ids_to_tokens(ids) | pred_string = self.tokenizer.convert_ids_to_tokens(ids) | ||||
pred_string = ''.join(pred_string) | pred_string = ''.join(pred_string) | ||||
@@ -1,27 +1,31 @@ | |||||
import os | |||||
import uuid | import uuid | ||||
from typing import Any, Dict, Union | from typing import Any, Dict, Union | ||||
import json | |||||
import uuid | |||||
from typing import Any, Dict, Union | |||||
import numpy as np | import numpy as np | ||||
from modelscope.models.nlp import SbertForNLI | |||||
from modelscope.preprocessors import NLIPreprocessor | |||||
from modelscope.utils.constant import Tasks | |||||
from ...models import Model | |||||
from ..base import Input, Pipeline | |||||
from ..base import Pipeline | |||||
from ..builder import PIPELINES | from ..builder import PIPELINES | ||||
from ...metainfo import Pipelines | |||||
from ...models import Model | |||||
from ...models.nlp import SbertForNLI | |||||
from ...preprocessors import NLIPreprocessor | |||||
from ...utils.constant import Tasks | |||||
__all__ = ['NLIPipeline'] | __all__ = ['NLIPipeline'] | ||||
@PIPELINES.register_module( | @PIPELINES.register_module( | ||||
Tasks.nli, module_name=r'nlp_structbert_nli_chinese-base') | |||||
Tasks.nli, module_name=Pipelines.nli) | |||||
class NLIPipeline(Pipeline): | class NLIPipeline(Pipeline): | ||||
def __init__(self, | def __init__(self, | ||||
model: Union[SbertForNLI, str], | model: Union[SbertForNLI, str], | ||||
preprocessor: NLIPreprocessor = None, | preprocessor: NLIPreprocessor = None, | ||||
first_sequence="first_sequence", | |||||
second_sequence="second_sequence", | |||||
**kwargs): | **kwargs): | ||||
"""use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | """use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | ||||
@@ -36,20 +40,12 @@ class NLIPipeline(Pipeline): | |||||
if preprocessor is None: | if preprocessor is None: | ||||
preprocessor = NLIPreprocessor( | preprocessor = NLIPreprocessor( | ||||
sc_model.model_dir, | sc_model.model_dir, | ||||
first_sequence='first_sequence', | |||||
second_sequence='second_sequence') | |||||
first_sequence=first_sequence, | |||||
second_sequence=second_sequence) | |||||
super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | ||||
assert len(sc_model.id2label) > 0 | |||||
self.label_path = os.path.join(sc_model.model_dir, | |||||
'label_mapping.json') | |||||
with open(self.label_path) as f: | |||||
self.label_mapping = json.load(f) | |||||
self.label_id_to_name = { | |||||
idx: name | |||||
for name, idx in self.label_mapping.items() | |||||
} | |||||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |||||
def postprocess(self, inputs: Dict[str, Any], **postprocess_params) -> Dict[str, str]: | |||||
"""process the prediction results | """process the prediction results | ||||
Args: | Args: | ||||
@@ -20,6 +20,8 @@ class SentenceSimilarityPipeline(Pipeline): | |||||
def __init__(self, | def __init__(self, | ||||
model: Union[Model, str], | model: Union[Model, str], | ||||
preprocessor: SequenceClassificationPreprocessor = None, | preprocessor: SequenceClassificationPreprocessor = None, | ||||
first_sequence="first_sequence", | |||||
second_sequence="second_sequence", | |||||
**kwargs): | **kwargs): | ||||
"""use `model` and `preprocessor` to create a nlp sentence similarity pipeline for prediction | """use `model` and `preprocessor` to create a nlp sentence similarity pipeline for prediction | ||||
@@ -35,14 +37,14 @@ class SentenceSimilarityPipeline(Pipeline): | |||||
if preprocessor is None: | if preprocessor is None: | ||||
preprocessor = SequenceClassificationPreprocessor( | preprocessor = SequenceClassificationPreprocessor( | ||||
sc_model.model_dir, | sc_model.model_dir, | ||||
first_sequence='first_sequence', | |||||
second_sequence='second_sequence') | |||||
first_sequence=first_sequence, | |||||
second_sequence=second_sequence) | |||||
super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | ||||
assert hasattr(self.model, 'id2label'), \ | assert hasattr(self.model, 'id2label'), \ | ||||
'id2label map should be initalizaed in init function.' | 'id2label map should be initalizaed in init function.' | ||||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |||||
def postprocess(self, inputs: Dict[str, Any], **postprocess_params) -> Dict[str, str]: | |||||
"""process the prediction results | """process the prediction results | ||||
Args: | Args: | ||||
@@ -5,24 +5,27 @@ from typing import Any, Dict, Union | |||||
import json | import json | ||||
import numpy as np | import numpy as np | ||||
from modelscope.models.nlp import SbertForSentimentClassification | |||||
from modelscope.preprocessors import SentimentClassificationPreprocessor | |||||
from modelscope.utils.constant import Tasks | |||||
from ...models.nlp import SbertForSentimentClassification | |||||
from ...preprocessors import SentimentClassificationPreprocessor | |||||
from ...utils.constant import Tasks | |||||
from ...models import Model | from ...models import Model | ||||
from ..base import Input, Pipeline | from ..base import Input, Pipeline | ||||
from ..builder import PIPELINES | from ..builder import PIPELINES | ||||
from ...metainfo import Pipelines | |||||
__all__ = ['SentimentClassificationPipeline'] | __all__ = ['SentimentClassificationPipeline'] | ||||
@PIPELINES.register_module( | @PIPELINES.register_module( | ||||
Tasks.sentiment_classification, | Tasks.sentiment_classification, | ||||
module_name=r'sbert-sentiment-classification') | |||||
module_name=Pipelines.sentiment_classification) | |||||
class SentimentClassificationPipeline(Pipeline): | class SentimentClassificationPipeline(Pipeline): | ||||
def __init__(self, | def __init__(self, | ||||
model: Union[SbertForSentimentClassification, str], | model: Union[SbertForSentimentClassification, str], | ||||
preprocessor: SentimentClassificationPreprocessor = None, | preprocessor: SentimentClassificationPreprocessor = None, | ||||
first_sequence="first_sequence", | |||||
second_sequence="second_sequence", | |||||
**kwargs): | **kwargs): | ||||
"""use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | """use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | ||||
@@ -38,20 +41,12 @@ class SentimentClassificationPipeline(Pipeline): | |||||
if preprocessor is None: | if preprocessor is None: | ||||
preprocessor = SentimentClassificationPreprocessor( | preprocessor = SentimentClassificationPreprocessor( | ||||
sc_model.model_dir, | sc_model.model_dir, | ||||
first_sequence='first_sequence', | |||||
second_sequence='second_sequence') | |||||
first_sequence=first_sequence, | |||||
second_sequence=second_sequence) | |||||
super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | ||||
assert len(sc_model.id2label) > 0 | |||||
self.label_path = os.path.join(sc_model.model_dir, | |||||
'label_mapping.json') | |||||
with open(self.label_path) as f: | |||||
self.label_mapping = json.load(f) | |||||
self.label_id_to_name = { | |||||
idx: name | |||||
for name, idx in self.label_mapping.items() | |||||
} | |||||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |||||
def postprocess(self, inputs: Dict[str, Any], **postprocess_params) -> Dict[str, str]: | |||||
"""process the prediction results | """process the prediction results | ||||
Args: | Args: | ||||
@@ -1,10 +1,10 @@ | |||||
from typing import Dict, Optional, Union | from typing import Dict, Optional, Union | ||||
from modelscope.metainfo import Pipelines | |||||
from modelscope.models import Model | |||||
from modelscope.models.nlp import PalmForTextGeneration | |||||
from modelscope.preprocessors import TextGenerationPreprocessor | |||||
from modelscope.utils.constant import Tasks | |||||
from ...metainfo import Pipelines | |||||
from ...models import Model | |||||
from ...models.nlp import PalmForTextGeneration | |||||
from ...preprocessors import TextGenerationPreprocessor | |||||
from ...utils.constant import Tasks | |||||
from ..base import Pipeline, Tensor | from ..base import Pipeline, Tensor | ||||
from ..builder import PIPELINES | from ..builder import PIPELINES | ||||
@@ -36,7 +36,7 @@ class TextGenerationPipeline(Pipeline): | |||||
super().__init__(model=model, preprocessor=preprocessor, **kwargs) | super().__init__(model=model, preprocessor=preprocessor, **kwargs) | ||||
self.tokenizer = model.tokenizer | self.tokenizer = model.tokenizer | ||||
def postprocess(self, inputs: Dict[str, Tensor]) -> Dict[str, str]: | |||||
def postprocess(self, inputs: Dict[str, Tensor], **postprocess_params) -> Dict[str, str]: | |||||
"""process the prediction results | """process the prediction results | ||||
Args: | Args: | ||||
@@ -1,10 +1,10 @@ | |||||
from typing import Any, Dict, Optional, Union | from typing import Any, Dict, Optional, Union | ||||
from modelscope.metainfo import Pipelines | |||||
from modelscope.models import Model | |||||
from modelscope.models.nlp import StructBertForTokenClassification | |||||
from modelscope.preprocessors import TokenClassifcationPreprocessor | |||||
from modelscope.utils.constant import Tasks | |||||
from ...metainfo import Pipelines | |||||
from ...models import Model | |||||
from ...models.nlp import SbertForTokenClassification | |||||
from ...preprocessors import TokenClassifcationPreprocessor | |||||
from ...utils.constant import Tasks | |||||
from ..base import Pipeline, Tensor | from ..base import Pipeline, Tensor | ||||
from ..builder import PIPELINES | from ..builder import PIPELINES | ||||
@@ -16,7 +16,7 @@ __all__ = ['WordSegmentationPipeline'] | |||||
class WordSegmentationPipeline(Pipeline): | class WordSegmentationPipeline(Pipeline): | ||||
def __init__(self, | def __init__(self, | ||||
model: Union[StructBertForTokenClassification, str], | |||||
model: Union[SbertForTokenClassification, str], | |||||
preprocessor: Optional[TokenClassifcationPreprocessor] = None, | preprocessor: Optional[TokenClassifcationPreprocessor] = None, | ||||
**kwargs): | **kwargs): | ||||
"""use `model` and `preprocessor` to create a nlp word segmentation pipeline for prediction | """use `model` and `preprocessor` to create a nlp word segmentation pipeline for prediction | ||||
@@ -27,15 +27,16 @@ class WordSegmentationPipeline(Pipeline): | |||||
""" | """ | ||||
model = model if isinstance( | model = model if isinstance( | ||||
model, | model, | ||||
StructBertForTokenClassification) else Model.from_pretrained(model) | |||||
SbertForTokenClassification) else Model.from_pretrained(model) | |||||
if preprocessor is None: | if preprocessor is None: | ||||
preprocessor = TokenClassifcationPreprocessor(model.model_dir) | preprocessor = TokenClassifcationPreprocessor(model.model_dir) | ||||
super().__init__(model=model, preprocessor=preprocessor, **kwargs) | super().__init__(model=model, preprocessor=preprocessor, **kwargs) | ||||
self.tokenizer = preprocessor.tokenizer | self.tokenizer = preprocessor.tokenizer | ||||
self.config = model.config | self.config = model.config | ||||
assert len(self.config.id2label) > 0 | |||||
self.id2label = self.config.id2label | self.id2label = self.config.id2label | ||||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |||||
def postprocess(self, inputs: Dict[str, Any], **postprocess_params) -> Dict[str, str]: | |||||
"""process the prediction results | """process the prediction results | ||||
Args: | Args: | ||||
@@ -6,10 +6,11 @@ import json | |||||
import numpy as np | import numpy as np | ||||
from scipy.special import softmax | from scipy.special import softmax | ||||
from modelscope.models.nlp import SbertForZeroShotClassification | |||||
from modelscope.preprocessors import SbertZeroShotClassificationPreprocessor | |||||
from modelscope.utils.constant import Tasks | |||||
from ...models.nlp import SbertForZeroShotClassification | |||||
from ...preprocessors import ZeroShotClassificationPreprocessor | |||||
from ...utils.constant import Tasks | |||||
from ...models import Model | from ...models import Model | ||||
from ...metainfo import Pipelines | |||||
from ..base import Input, Pipeline | from ..base import Input, Pipeline | ||||
from ..builder import PIPELINES | from ..builder import PIPELINES | ||||
@@ -18,12 +19,12 @@ __all__ = ['ZeroShotClassificationPipeline'] | |||||
@PIPELINES.register_module( | @PIPELINES.register_module( | ||||
Tasks.zero_shot_classification, | Tasks.zero_shot_classification, | ||||
module_name=r'bert-zero-shot-classification') | |||||
module_name=Pipelines.zero_shot_classification) | |||||
class ZeroShotClassificationPipeline(Pipeline): | class ZeroShotClassificationPipeline(Pipeline): | ||||
def __init__(self, | def __init__(self, | ||||
model: Union[SbertForZeroShotClassification, str], | model: Union[SbertForZeroShotClassification, str], | ||||
preprocessor: SbertZeroShotClassificationPreprocessor = None, | |||||
preprocessor: ZeroShotClassificationPreprocessor = None, | |||||
**kwargs): | **kwargs): | ||||
"""use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | """use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | ||||
@@ -32,7 +33,7 @@ class ZeroShotClassificationPipeline(Pipeline): | |||||
preprocessor (SentimentClassificationPreprocessor): a preprocessor instance | preprocessor (SentimentClassificationPreprocessor): a preprocessor instance | ||||
""" | """ | ||||
assert isinstance(model, str) or isinstance(model, SbertForZeroShotClassification), \ | assert isinstance(model, str) or isinstance(model, SbertForZeroShotClassification), \ | ||||
'model must be a single str or BertForZeroShotClassification' | |||||
'model must be a single str or SbertForZeroShotClassification' | |||||
sc_model = model if isinstance( | sc_model = model if isinstance( | ||||
model, | model, | ||||
SbertForZeroShotClassification) else Model.from_pretrained(model) | SbertForZeroShotClassification) else Model.from_pretrained(model) | ||||
@@ -14,9 +14,9 @@ from .builder import PREPROCESSORS | |||||
__all__ = [ | __all__ = [ | ||||
'Tokenize', 'SequenceClassificationPreprocessor', | 'Tokenize', 'SequenceClassificationPreprocessor', | ||||
'PalmTextGenerationPreprocessor', 'SbertZeroShotClassificationPreprocessor', | |||||
'SbertTokenClassifcationPreprocessor', 'SbertNLIPreprocessor', | |||||
'SbertSentimentClassificationPreprocessor', 'FillMaskPreprocessor' | |||||
'TextGenerationPreprocessor', 'ZeroShotClassificationPreprocessor', | |||||
'TokenClassifcationPreprocessor', 'NLIPreprocessor', | |||||
'SentimentClassificationPreprocessor', 'FillMaskPreprocessor' | |||||
] | ] | ||||
@@ -35,8 +35,8 @@ class Tokenize(Preprocessor): | |||||
@PREPROCESSORS.register_module( | @PREPROCESSORS.register_module( | ||||
Fields.nlp, module_name=Preprocessors.sbert_nli_tokenizer) | |||||
class SbertNLIPreprocessor(Preprocessor): | |||||
Fields.nlp, module_name=Preprocessors.nli_tokenizer) | |||||
class NLIPreprocessor(Preprocessor): | |||||
def __init__(self, model_dir: str, *args, **kwargs): | def __init__(self, model_dir: str, *args, **kwargs): | ||||
"""preprocess the data via the vocab.txt from the `model_dir` path | """preprocess the data via the vocab.txt from the `model_dir` path | ||||
@@ -105,8 +105,8 @@ class SbertNLIPreprocessor(Preprocessor): | |||||
@PREPROCESSORS.register_module( | @PREPROCESSORS.register_module( | ||||
Fields.nlp, module_name=Preprocessors.sbert_sen_cls_tokenizer) | |||||
class SbertSentimentClassificationPreprocessor(Preprocessor): | |||||
Fields.nlp, module_name=Preprocessors.sen_cls_tokenizer) | |||||
class SentimentClassificationPreprocessor(Preprocessor): | |||||
def __init__(self, model_dir: str, *args, **kwargs): | def __init__(self, model_dir: str, *args, **kwargs): | ||||
"""preprocess the data via the vocab.txt from the `model_dir` path | """preprocess the data via the vocab.txt from the `model_dir` path | ||||
@@ -264,7 +264,7 @@ class SequenceClassificationPreprocessor(Preprocessor): | |||||
@PREPROCESSORS.register_module( | @PREPROCESSORS.register_module( | ||||
Fields.nlp, module_name=Preprocessors.palm_text_gen_tokenizer) | Fields.nlp, module_name=Preprocessors.palm_text_gen_tokenizer) | ||||
class PalmTextGenerationPreprocessor(Preprocessor): | |||||
class TextGenerationPreprocessor(Preprocessor): | |||||
def __init__(self, model_dir: str, tokenizer, *args, **kwargs): | def __init__(self, model_dir: str, tokenizer, *args, **kwargs): | ||||
"""preprocess the data using the vocab.txt from the `model_dir` path | """preprocess the data using the vocab.txt from the `model_dir` path | ||||
@@ -374,8 +374,8 @@ class FillMaskPreprocessor(Preprocessor): | |||||
@PREPROCESSORS.register_module( | @PREPROCESSORS.register_module( | ||||
Fields.nlp, module_name=Preprocessors.sbert_zero_shot_cls_tokenizer) | |||||
class SbertZeroShotClassificationPreprocessor(Preprocessor): | |||||
Fields.nlp, module_name=Preprocessors.zero_shot_cls_tokenizer) | |||||
class ZeroShotClassificationPreprocessor(Preprocessor): | |||||
def __init__(self, model_dir: str, *args, **kwargs): | def __init__(self, model_dir: str, *args, **kwargs): | ||||
"""preprocess the data via the vocab.txt from the `model_dir` path | """preprocess the data via the vocab.txt from the `model_dir` path | ||||
@@ -418,8 +418,8 @@ class SbertZeroShotClassificationPreprocessor(Preprocessor): | |||||
@PREPROCESSORS.register_module( | @PREPROCESSORS.register_module( | ||||
Fields.nlp, module_name=Preprocessors.sbert_token_cls_tokenizer) | |||||
class SbertTokenClassifcationPreprocessor(Preprocessor): | |||||
Fields.nlp, module_name=Preprocessors.token_cls_tokenizer) | |||||
class TokenClassifcationPreprocessor(Preprocessor): | |||||
def __init__(self, model_dir: str, *args, **kwargs): | def __init__(self, model_dir: str, *args, **kwargs): | ||||
"""preprocess the data via the vocab.txt from the `model_dir` path | """preprocess the data via the vocab.txt from the `model_dir` path | ||||