diff --git a/modelscope/models/cv/shop_segmentation/models.py b/modelscope/models/cv/shop_segmentation/models.py index 8b82d1d1..171aafbd 100644 --- a/modelscope/models/cv/shop_segmentation/models.py +++ b/modelscope/models/cv/shop_segmentation/models.py @@ -552,7 +552,7 @@ class CLIPVisionTransformer(nn.Module): nn.GroupNorm(1, embed_dim), nn.ConvTranspose2d( embed_dim, embed_dim, kernel_size=2, stride=2), - nn.SyncBatchNorm(embed_dim), + nn.BatchNorm2d(embed_dim), nn.GELU(), nn.ConvTranspose2d( embed_dim, embed_dim, kernel_size=2, stride=2), diff --git a/modelscope/models/cv/shop_segmentation/shop_seg_model.py b/modelscope/models/cv/shop_segmentation/shop_seg_model.py index 409c583b..0aeeb1de 100644 --- a/modelscope/models/cv/shop_segmentation/shop_seg_model.py +++ b/modelscope/models/cv/shop_segmentation/shop_seg_model.py @@ -33,18 +33,18 @@ class ShopSegmentation(TorchModel): model_dir=model_dir, device_id=device_id, *args, **kwargs) self.model = SHOPSEG(model_dir=model_dir) - pretrained_params = torch.load('{}/{}'.format( - model_dir, ModelFile.TORCH_MODEL_BIN_FILE)) - + pretrained_params = torch.load( + '{}/{}'.format(model_dir, ModelFile.TORCH_MODEL_BIN_FILE), + map_location='cpu') self.model.load_state_dict(pretrained_params) self.model.eval() - self.device_id = device_id - if self.device_id >= 0 and torch.cuda.is_available(): - self.model.to('cuda:{}'.format(self.device_id)) - logger.info('Use GPU: {}'.format(self.device_id)) + if device_id >= 0 and torch.cuda.is_available(): + self.model.to('cuda:{}'.format(device_id)) + logger.info('Use GPU: {}'.format(device_id)) else: - self.device_id = -1 + device_id = -1 logger.info('Use CPU for inference') + self.device_id = device_id def preprocess(self, img, size=1024): mean = [0.48145466, 0.4578275, 0.40821073]