mass lib 接入人像卡通化算法 Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/8925552 * update * fix style issues * fix style issues * fix style issues * fix style issues * add requirements * fix bug * adapt class init * fix * fix tf2 issue * feat: Fix confilct, auto commit by WebIDE * fix commit issues * fixmaster
@@ -0,0 +1,4 @@ | |||
Copyright (c) Peppa_Pig_Face_Engine | |||
https://github.com/610265158/Peppa_Pig_Face_Engine |
@@ -0,0 +1,97 @@ | |||
import numpy as np | |||
from ..config import config as cfg | |||
class GroupTrack(): | |||
def __init__(self): | |||
self.old_frame = None | |||
self.previous_landmarks_set = None | |||
self.with_landmark = True | |||
self.thres = cfg.TRACE.pixel_thres | |||
self.alpha = cfg.TRACE.smooth_landmark | |||
self.iou_thres = cfg.TRACE.iou_thres | |||
def calculate(self, img, current_landmarks_set): | |||
if self.previous_landmarks_set is None: | |||
self.previous_landmarks_set = current_landmarks_set | |||
result = current_landmarks_set | |||
else: | |||
previous_lm_num = self.previous_landmarks_set.shape[0] | |||
if previous_lm_num == 0: | |||
self.previous_landmarks_set = current_landmarks_set | |||
result = current_landmarks_set | |||
return result | |||
else: | |||
result = [] | |||
for i in range(current_landmarks_set.shape[0]): | |||
not_in_flag = True | |||
for j in range(previous_lm_num): | |||
if self.iou(current_landmarks_set[i], | |||
self.previous_landmarks_set[j] | |||
) > self.iou_thres: | |||
result.append( | |||
self.smooth(current_landmarks_set[i], | |||
self.previous_landmarks_set[j])) | |||
not_in_flag = False | |||
break | |||
if not_in_flag: | |||
result.append(current_landmarks_set[i]) | |||
result = np.array(result) | |||
self.previous_landmarks_set = result | |||
return result | |||
def iou(self, p_set0, p_set1): | |||
rec1 = [ | |||
np.min(p_set0[:, 0]), | |||
np.min(p_set0[:, 1]), | |||
np.max(p_set0[:, 0]), | |||
np.max(p_set0[:, 1]) | |||
] | |||
rec2 = [ | |||
np.min(p_set1[:, 0]), | |||
np.min(p_set1[:, 1]), | |||
np.max(p_set1[:, 0]), | |||
np.max(p_set1[:, 1]) | |||
] | |||
# computing area of each rectangles | |||
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) | |||
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) | |||
# computing the sum_area | |||
sum_area = S_rec1 + S_rec2 | |||
# find the each edge of intersect rectangle | |||
x1 = max(rec1[0], rec2[0]) | |||
y1 = max(rec1[1], rec2[1]) | |||
x2 = min(rec1[2], rec2[2]) | |||
y2 = min(rec1[3], rec2[3]) | |||
# judge if there is an intersect | |||
intersect = max(0, x2 - x1) * max(0, y2 - y1) | |||
iou = intersect / (sum_area - intersect) | |||
return iou | |||
def smooth(self, now_landmarks, previous_landmarks): | |||
result = [] | |||
for i in range(now_landmarks.shape[0]): | |||
x = now_landmarks[i][0] - previous_landmarks[i][0] | |||
y = now_landmarks[i][1] - previous_landmarks[i][1] | |||
dis = np.sqrt(np.square(x) + np.square(y)) | |||
if dis < self.thres: | |||
result.append(previous_landmarks[i]) | |||
else: | |||
result.append( | |||
self.do_moving_average(now_landmarks[i], | |||
previous_landmarks[i])) | |||
return np.array(result) | |||
def do_moving_average(self, p_now, p_previous): | |||
p = self.alpha * p_now + (1 - self.alpha) * p_previous | |||
return p |
@@ -0,0 +1,23 @@ | |||
import os | |||
import numpy as np | |||
from easydict import EasyDict as edict | |||
config = edict() | |||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |||
config.DETECT = edict() | |||
config.DETECT.topk = 10 | |||
config.DETECT.thres = 0.8 | |||
config.DETECT.input_shape = (512, 512, 3) | |||
config.KEYPOINTS = edict() | |||
config.KEYPOINTS.p_num = 68 | |||
config.KEYPOINTS.base_extend_range = [0.2, 0.3] | |||
config.KEYPOINTS.input_shape = (160, 160, 3) | |||
config.TRACE = edict() | |||
config.TRACE.pixel_thres = 1 | |||
config.TRACE.smooth_box = 0.3 | |||
config.TRACE.smooth_landmark = 0.95 | |||
config.TRACE.iou_thres = 0.5 | |||
config.DATA = edict() | |||
config.DATA.pixel_means = np.array([123., 116., 103.]) # RGB |
@@ -0,0 +1,116 @@ | |||
import time | |||
import cv2 | |||
import numpy as np | |||
import tensorflow as tf | |||
from .config import config as cfg | |||
if tf.__version__ >= '2.0': | |||
tf = tf.compat.v1 | |||
class FaceDetector: | |||
def __init__(self, dir): | |||
self.model_path = dir + '/detector.pb' | |||
self.thres = cfg.DETECT.thres | |||
self.input_shape = cfg.DETECT.input_shape | |||
self._graph = tf.Graph() | |||
with self._graph.as_default(): | |||
self._graph, self._sess = self.init_model(self.model_path) | |||
self.input_image = tf.get_default_graph().get_tensor_by_name( | |||
'tower_0/images:0') | |||
self.training = tf.get_default_graph().get_tensor_by_name( | |||
'training_flag:0') | |||
self.output_ops = [ | |||
tf.get_default_graph().get_tensor_by_name('tower_0/boxes:0'), | |||
tf.get_default_graph().get_tensor_by_name('tower_0/scores:0'), | |||
tf.get_default_graph().get_tensor_by_name( | |||
'tower_0/num_detections:0'), | |||
] | |||
def __call__(self, image): | |||
image, scale_x, scale_y = self.preprocess( | |||
image, | |||
target_width=self.input_shape[1], | |||
target_height=self.input_shape[0]) | |||
image = np.expand_dims(image, 0) | |||
boxes, scores, num_boxes = self._sess.run( | |||
self.output_ops, | |||
feed_dict={ | |||
self.input_image: image, | |||
self.training: False | |||
}) | |||
num_boxes = num_boxes[0] | |||
boxes = boxes[0][:num_boxes] | |||
scores = scores[0][:num_boxes] | |||
to_keep = scores > self.thres | |||
boxes = boxes[to_keep] | |||
scores = scores[to_keep] | |||
y1 = self.input_shape[0] / scale_y | |||
x1 = self.input_shape[1] / scale_x | |||
y2 = self.input_shape[0] / scale_y | |||
x2 = self.input_shape[1] / scale_x | |||
scaler = np.array([y1, x1, y2, x2], dtype='float32') | |||
boxes = boxes * scaler | |||
scores = np.expand_dims(scores, 0).reshape([-1, 1]) | |||
for i in range(boxes.shape[0]): | |||
boxes[i] = np.array( | |||
[boxes[i][1], boxes[i][0], boxes[i][3], boxes[i][2]]) | |||
return np.concatenate([boxes, scores], axis=1) | |||
def preprocess(self, image, target_height, target_width, label=None): | |||
h, w, c = image.shape | |||
bimage = np.zeros( | |||
shape=[target_height, target_width, c], | |||
dtype=image.dtype) + np.array( | |||
cfg.DATA.pixel_means, dtype=image.dtype) | |||
long_side = max(h, w) | |||
scale_x = scale_y = target_height / long_side | |||
image = cv2.resize(image, None, fx=scale_x, fy=scale_y) | |||
h_, w_, _ = image.shape | |||
bimage[:h_, :w_, :] = image | |||
return bimage, scale_x, scale_y | |||
def init_model(self, *args): | |||
pb_path = args[0] | |||
def init_pb(model_path): | |||
config = tf.ConfigProto() | |||
config.gpu_options.per_process_gpu_memory_fraction = 0.2 | |||
compute_graph = tf.Graph() | |||
compute_graph.as_default() | |||
sess = tf.Session(config=config) | |||
with tf.gfile.GFile(model_path, 'rb') as fid: | |||
graph_def = tf.GraphDef() | |||
graph_def.ParseFromString(fid.read()) | |||
tf.import_graph_def(graph_def, name='') | |||
return (compute_graph, sess) | |||
model = init_pb(pb_path) | |||
graph = model[0] | |||
sess = model[1] | |||
return graph, sess |
@@ -0,0 +1,154 @@ | |||
import cv2 | |||
import numpy as np | |||
import tensorflow as tf | |||
from .config import config as cfg | |||
if tf.__version__ >= '2.0': | |||
tf = tf.compat.v1 | |||
class FaceLandmark: | |||
def __init__(self, dir): | |||
self.model_path = dir + '/keypoints.pb' | |||
self.min_face = 60 | |||
self.keypoint_num = cfg.KEYPOINTS.p_num * 2 | |||
self._graph = tf.Graph() | |||
with self._graph.as_default(): | |||
self._graph, self._sess = self.init_model(self.model_path) | |||
self.img_input = tf.get_default_graph().get_tensor_by_name( | |||
'tower_0/images:0') | |||
self.embeddings = tf.get_default_graph().get_tensor_by_name( | |||
'tower_0/prediction:0') | |||
self.training = tf.get_default_graph().get_tensor_by_name( | |||
'training_flag:0') | |||
self.landmark = self.embeddings[:, :self.keypoint_num] | |||
self.headpose = self.embeddings[:, -7:-4] * 90. | |||
self.state = tf.nn.sigmoid(self.embeddings[:, -4:]) | |||
def __call__(self, img, bboxes): | |||
landmark_result = [] | |||
state_result = [] | |||
for i, bbox in enumerate(bboxes): | |||
landmark, state = self._one_shot_run(img, bbox, i) | |||
if landmark is not None: | |||
landmark_result.append(landmark) | |||
state_result.append(state) | |||
return np.array(landmark_result), np.array(state_result) | |||
def simple_run(self, cropped_img): | |||
with self._graph.as_default(): | |||
cropped_img = np.expand_dims(cropped_img, axis=0) | |||
landmark, p, states = self._sess.run( | |||
[self.landmark, self.headpose, self.state], | |||
feed_dict={ | |||
self.img_input: cropped_img, | |||
self.training: False | |||
}) | |||
return landmark, states | |||
def _one_shot_run(self, image, bbox, i): | |||
bbox_width = bbox[2] - bbox[0] | |||
bbox_height = bbox[3] - bbox[1] | |||
if (bbox_width <= self.min_face and bbox_height <= self.min_face): | |||
return None, None | |||
add = int(max(bbox_width, bbox_height)) | |||
bimg = cv2.copyMakeBorder( | |||
image, | |||
add, | |||
add, | |||
add, | |||
add, | |||
borderType=cv2.BORDER_CONSTANT, | |||
value=cfg.DATA.pixel_means) | |||
bbox += add | |||
one_edge = (1 + 2 * cfg.KEYPOINTS.base_extend_range[0]) * bbox_width | |||
center = [(bbox[0] + bbox[2]) // 2, (bbox[1] + bbox[3]) // 2] | |||
bbox[0] = center[0] - one_edge // 2 | |||
bbox[1] = center[1] - one_edge // 2 | |||
bbox[2] = center[0] + one_edge // 2 | |||
bbox[3] = center[1] + one_edge // 2 | |||
bbox = bbox.astype(np.int) | |||
crop_image = bimg[bbox[1]:bbox[3], bbox[0]:bbox[2], :] | |||
h, w, _ = crop_image.shape | |||
crop_image = cv2.resize( | |||
crop_image, | |||
(cfg.KEYPOINTS.input_shape[1], cfg.KEYPOINTS.input_shape[0])) | |||
crop_image = crop_image.astype(np.float32) | |||
keypoints, state = self.simple_run(crop_image) | |||
res = keypoints[0][:self.keypoint_num].reshape((-1, 2)) | |||
res[:, 0] = res[:, 0] * w / cfg.KEYPOINTS.input_shape[1] | |||
res[:, 1] = res[:, 1] * h / cfg.KEYPOINTS.input_shape[0] | |||
landmark = [] | |||
for _index in range(res.shape[0]): | |||
x_y = res[_index] | |||
landmark.append([ | |||
int(x_y[0] * cfg.KEYPOINTS.input_shape[0] + bbox[0] - add), | |||
int(x_y[1] * cfg.KEYPOINTS.input_shape[1] + bbox[1] - add) | |||
]) | |||
landmark = np.array(landmark, np.float32) | |||
return landmark, state | |||
def init_model(self, *args): | |||
if len(args) == 1: | |||
use_pb = True | |||
pb_path = args[0] | |||
else: | |||
use_pb = False | |||
meta_path = args[0] | |||
restore_model_path = args[1] | |||
def ini_ckpt(): | |||
graph = tf.Graph() | |||
graph.as_default() | |||
configProto = tf.ConfigProto() | |||
configProto.gpu_options.allow_growth = True | |||
sess = tf.Session(config=configProto) | |||
# load_model(model_path, sess) | |||
saver = tf.train.import_meta_graph(meta_path) | |||
saver.restore(sess, restore_model_path) | |||
print('Model restred!') | |||
return (graph, sess) | |||
def init_pb(model_path): | |||
config = tf.ConfigProto() | |||
config.gpu_options.per_process_gpu_memory_fraction = 0.2 | |||
compute_graph = tf.Graph() | |||
compute_graph.as_default() | |||
sess = tf.Session(config=config) | |||
with tf.gfile.GFile(model_path, 'rb') as fid: | |||
graph_def = tf.GraphDef() | |||
graph_def.ParseFromString(fid.read()) | |||
tf.import_graph_def(graph_def, name='') | |||
# saver = tf.train.Saver(tf.global_variables()) | |||
# saver.save(sess, save_path='./tmp.ckpt') | |||
return (compute_graph, sess) | |||
if use_pb: | |||
model = init_pb(pb_path) | |||
else: | |||
model = ini_ckpt() | |||
graph = model[0] | |||
sess = model[1] | |||
return graph, sess |
@@ -0,0 +1,150 @@ | |||
import time | |||
import cv2 | |||
import numpy as np | |||
from .config import config as cfg | |||
from .face_detector import FaceDetector | |||
from .face_landmark import FaceLandmark | |||
from .LK.lk import GroupTrack | |||
class FaceAna(): | |||
''' | |||
by default the top3 facea sorted by area will be calculated for time reason | |||
''' | |||
def __init__(self, model_dir): | |||
self.face_detector = FaceDetector(model_dir) | |||
self.face_landmark = FaceLandmark(model_dir) | |||
self.trace = GroupTrack() | |||
self.track_box = None | |||
self.previous_image = None | |||
self.previous_box = None | |||
self.diff_thres = 5 | |||
self.top_k = cfg.DETECT.topk | |||
self.iou_thres = cfg.TRACE.iou_thres | |||
self.alpha = cfg.TRACE.smooth_box | |||
def run(self, image): | |||
boxes = self.face_detector(image) | |||
if boxes.shape[0] > self.top_k: | |||
boxes = self.sort(boxes) | |||
boxes_return = np.array(boxes) | |||
landmarks, states = self.face_landmark(image, boxes) | |||
if 1: | |||
track = [] | |||
for i in range(landmarks.shape[0]): | |||
track.append([ | |||
np.min(landmarks[i][:, 0]), | |||
np.min(landmarks[i][:, 1]), | |||
np.max(landmarks[i][:, 0]), | |||
np.max(landmarks[i][:, 1]) | |||
]) | |||
tmp_box = np.array(track) | |||
self.track_box = self.judge_boxs(boxes_return, tmp_box) | |||
self.track_box, landmarks = self.sort_res(self.track_box, landmarks) | |||
return self.track_box, landmarks, states | |||
def sort_res(self, bboxes, points): | |||
area = [] | |||
for bbox in bboxes: | |||
bbox_width = bbox[2] - bbox[0] | |||
bbox_height = bbox[3] - bbox[1] | |||
area.append(bbox_height * bbox_width) | |||
area = np.array(area) | |||
picked = area.argsort()[::-1] | |||
sorted_bboxes = [bboxes[x] for x in picked] | |||
sorted_points = [points[x] for x in picked] | |||
return np.array(sorted_bboxes), np.array(sorted_points) | |||
def diff_frames(self, previous_frame, image): | |||
if previous_frame is None: | |||
return True | |||
else: | |||
_diff = cv2.absdiff(previous_frame, image) | |||
diff = np.sum( | |||
_diff) / previous_frame.shape[0] / previous_frame.shape[1] / 3. | |||
return diff > self.diff_thres | |||
def sort(self, bboxes): | |||
if self.top_k > 100: | |||
return bboxes | |||
area = [] | |||
for bbox in bboxes: | |||
bbox_width = bbox[2] - bbox[0] | |||
bbox_height = bbox[3] - bbox[1] | |||
area.append(bbox_height * bbox_width) | |||
area = np.array(area) | |||
picked = area.argsort()[-self.top_k:][::-1] | |||
sorted_bboxes = [bboxes[x] for x in picked] | |||
return np.array(sorted_bboxes) | |||
def judge_boxs(self, previuous_bboxs, now_bboxs): | |||
def iou(rec1, rec2): | |||
# computing area of each rectangles | |||
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) | |||
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) | |||
# computing the sum_area | |||
sum_area = S_rec1 + S_rec2 | |||
# find the each edge of intersect rectangle | |||
x1 = max(rec1[0], rec2[0]) | |||
y1 = max(rec1[1], rec2[1]) | |||
x2 = min(rec1[2], rec2[2]) | |||
y2 = min(rec1[3], rec2[3]) | |||
# judge if there is an intersect | |||
intersect = max(0, x2 - x1) * max(0, y2 - y1) | |||
return intersect / (sum_area - intersect) | |||
if previuous_bboxs is None: | |||
return now_bboxs | |||
result = [] | |||
for i in range(now_bboxs.shape[0]): | |||
contain = False | |||
for j in range(previuous_bboxs.shape[0]): | |||
if iou(now_bboxs[i], previuous_bboxs[j]) > self.iou_thres: | |||
result.append( | |||
self.smooth(now_bboxs[i], previuous_bboxs[j])) | |||
contain = True | |||
break | |||
if not contain: | |||
result.append(now_bboxs[i]) | |||
return np.array(result) | |||
def smooth(self, now_box, previous_box): | |||
return self.do_moving_average(now_box[:4], previous_box[:4]) | |||
def do_moving_average(self, p_now, p_previous): | |||
p = self.alpha * p_now + (1 - self.alpha) * p_previous | |||
return p | |||
def reset(self): | |||
''' | |||
reset the previous info used foe tracking, | |||
:return: | |||
''' | |||
self.track_box = None | |||
self.previous_image = None | |||
self.previous_box = None |
@@ -0,0 +1,21 @@ | |||
MIT License | |||
Copyright (c) 2017 Dan Antoshchenko | |||
Permission is hereby granted, free of charge, to any person obtaining a copy | |||
of this software and associated documentation files (the "Software"), to deal | |||
in the Software without restriction, including without limitation the rights | |||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |||
copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all | |||
copies or substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |||
SOFTWARE. |
@@ -0,0 +1,26 @@ | |||
# MTCNN | |||
`pytorch` implementation of **inference stage** of face detection algorithm described in | |||
[Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://arxiv.org/abs/1604.02878). | |||
## Example | |||
 | |||
## How to use it | |||
Just download the repository and then do this | |||
```python | |||
from src import detect_faces | |||
from PIL import Image | |||
image = Image.open('image.jpg') | |||
bounding_boxes, landmarks = detect_faces(image) | |||
``` | |||
For examples see `test_on_images.ipynb`. | |||
## Requirements | |||
* pytorch 0.2 | |||
* Pillow, numpy | |||
## Credit | |||
This implementation is heavily inspired by: | |||
* [pangyupo/mxnet_mtcnn_face_detection](https://github.com/pangyupo/mxnet_mtcnn_face_detection) |
@@ -0,0 +1,187 @@ | |||
""" | |||
Created on Mon Apr 24 15:43:29 2017 | |||
@author: zhaoy | |||
""" | |||
import cv2 | |||
import numpy as np | |||
from .matlab_cp2tform import get_similarity_transform_for_cv2 | |||
# reference facial points, a list of coordinates (x,y) | |||
dx = 1 | |||
dy = 1 | |||
REFERENCE_FACIAL_POINTS = [ | |||
[30.29459953 + dx, 51.69630051 + dy], # left eye | |||
[65.53179932 + dx, 51.50139999 + dy], # right eye | |||
[48.02519989 + dx, 71.73660278 + dy], # nose | |||
[33.54930115 + dx, 92.3655014 + dy], # left mouth | |||
[62.72990036 + dx, 92.20410156 + dy] # right mouth | |||
] | |||
DEFAULT_CROP_SIZE = (96, 112) | |||
global FACIAL_POINTS | |||
class FaceWarpException(Exception): | |||
def __str__(self): | |||
return 'In File {}:{}'.format(__file__, super.__str__(self)) | |||
def get_reference_facial_points(output_size=None, | |||
inner_padding_factor=0.0, | |||
outer_padding=(0, 0), | |||
default_square=False): | |||
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) | |||
tmp_crop_size = np.array(DEFAULT_CROP_SIZE) | |||
# 0) make the inner region a square | |||
if default_square: | |||
size_diff = max(tmp_crop_size) - tmp_crop_size | |||
tmp_5pts += size_diff / 2 | |||
tmp_crop_size += size_diff | |||
h_crop = tmp_crop_size[0] | |||
w_crop = tmp_crop_size[1] | |||
if (output_size): | |||
if (output_size[0] == h_crop and output_size[1] == w_crop): | |||
return tmp_5pts | |||
if (inner_padding_factor == 0 and outer_padding == (0, 0)): | |||
if output_size is None: | |||
return tmp_5pts | |||
else: | |||
raise FaceWarpException( | |||
'No paddings to do, output_size must be None or {}'.format( | |||
tmp_crop_size)) | |||
# check output size | |||
if not (0 <= inner_padding_factor <= 1.0): | |||
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') | |||
factor = inner_padding_factor > 0 or outer_padding[0] > 0 | |||
factor = factor or outer_padding[1] > 0 | |||
if (factor and output_size is None): | |||
output_size = tmp_crop_size * \ | |||
(1 + inner_padding_factor * 2).astype(np.int32) | |||
output_size += np.array(outer_padding) | |||
cond1 = outer_padding[0] < output_size[0] | |||
cond2 = outer_padding[1] < output_size[1] | |||
if not (cond1 and cond2): | |||
raise FaceWarpException('Not (outer_padding[0] < output_size[0]' | |||
'and outer_padding[1] < output_size[1])') | |||
# 1) pad the inner region according inner_padding_factor | |||
if inner_padding_factor > 0: | |||
size_diff = tmp_crop_size * inner_padding_factor * 2 | |||
tmp_5pts += size_diff / 2 | |||
tmp_crop_size += np.round(size_diff).astype(np.int32) | |||
# 2) resize the padded inner region | |||
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 | |||
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[ | |||
1] * tmp_crop_size[0]: | |||
raise FaceWarpException( | |||
'Must have (output_size - outer_padding)' | |||
'= some_scale * (crop_size * (1.0 + inner_padding_factor)') | |||
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] | |||
tmp_5pts = tmp_5pts * scale_factor | |||
# 3) add outer_padding to make output_size | |||
reference_5point = tmp_5pts + np.array(outer_padding) | |||
return reference_5point | |||
def get_affine_transform_matrix(src_pts, dst_pts): | |||
tfm = np.float32([[1, 0, 0], [0, 1, 0]]) | |||
n_pts = src_pts.shape[0] | |||
ones = np.ones((n_pts, 1), src_pts.dtype) | |||
src_pts_ = np.hstack([src_pts, ones]) | |||
dst_pts_ = np.hstack([dst_pts, ones]) | |||
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) | |||
if rank == 3: | |||
tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], | |||
[A[0, 1], A[1, 1], A[2, 1]]]) | |||
elif rank == 2: | |||
tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]]) | |||
return tfm | |||
def warp_and_crop_face(src_img, | |||
facial_pts, | |||
ratio=0.84, | |||
reference_pts=None, | |||
crop_size=(96, 112), | |||
align_type='similarity' | |||
'', | |||
return_trans_inv=False): | |||
if reference_pts is None: | |||
if crop_size[0] == 96 and crop_size[1] == 112: | |||
reference_pts = REFERENCE_FACIAL_POINTS | |||
else: | |||
default_square = False | |||
inner_padding_factor = 0 | |||
outer_padding = (0, 0) | |||
output_size = crop_size | |||
reference_pts = get_reference_facial_points( | |||
output_size, inner_padding_factor, outer_padding, | |||
default_square) | |||
ref_pts = np.float32(reference_pts) | |||
factor = ratio | |||
ref_pts = (ref_pts - 112 / 2) * factor + 112 / 2 | |||
ref_pts *= crop_size[0] / 112. | |||
ref_pts_shp = ref_pts.shape | |||
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: | |||
raise FaceWarpException( | |||
'reference_pts.shape must be (K,2) or (2,K) and K>2') | |||
if ref_pts_shp[0] == 2: | |||
ref_pts = ref_pts.T | |||
src_pts = np.float32(facial_pts) | |||
src_pts_shp = src_pts.shape | |||
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: | |||
raise FaceWarpException( | |||
'facial_pts.shape must be (K,2) or (2,K) and K>2') | |||
if src_pts_shp[0] == 2: | |||
src_pts = src_pts.T | |||
if src_pts.shape != ref_pts.shape: | |||
raise FaceWarpException( | |||
'facial_pts and reference_pts must have the same shape') | |||
if align_type == 'cv2_affine': | |||
tfm = cv2.getAffineTransform(src_pts, ref_pts) | |||
tfm_inv = cv2.getAffineTransform(ref_pts, src_pts) | |||
elif align_type == 'affine': | |||
tfm = get_affine_transform_matrix(src_pts, ref_pts) | |||
tfm_inv = get_affine_transform_matrix(ref_pts, src_pts) | |||
else: | |||
tfm, tfm_inv = get_similarity_transform_for_cv2(src_pts, ref_pts) | |||
face_img = cv2.warpAffine( | |||
src_img, | |||
tfm, (crop_size[0], crop_size[1]), | |||
borderValue=(255, 255, 255)) | |||
if return_trans_inv: | |||
return face_img, tfm_inv | |||
else: | |||
return face_img |
@@ -0,0 +1,339 @@ | |||
""" | |||
Created on Tue Jul 11 06:54:28 2017 | |||
@author: zhaoyafei | |||
""" | |||
import numpy as np | |||
from numpy.linalg import inv, lstsq | |||
from numpy.linalg import matrix_rank as rank | |||
from numpy.linalg import norm | |||
class MatlabCp2tormException(Exception): | |||
def __str__(self): | |||
return 'In File {}:{}'.format(__file__, super.__str__(self)) | |||
def tformfwd(trans, uv): | |||
""" | |||
Function: | |||
---------- | |||
apply affine transform 'trans' to uv | |||
Parameters: | |||
---------- | |||
@trans: 3x3 np.array | |||
transform matrix | |||
@uv: Kx2 np.array | |||
each row is a pair of coordinates (x, y) | |||
Returns: | |||
---------- | |||
@xy: Kx2 np.array | |||
each row is a pair of transformed coordinates (x, y) | |||
""" | |||
uv = np.hstack((uv, np.ones((uv.shape[0], 1)))) | |||
xy = np.dot(uv, trans) | |||
xy = xy[:, 0:-1] | |||
return xy | |||
def tforminv(trans, uv): | |||
""" | |||
Function: | |||
---------- | |||
apply the inverse of affine transform 'trans' to uv | |||
Parameters: | |||
---------- | |||
@trans: 3x3 np.array | |||
transform matrix | |||
@uv: Kx2 np.array | |||
each row is a pair of coordinates (x, y) | |||
Returns: | |||
---------- | |||
@xy: Kx2 np.array | |||
each row is a pair of inverse-transformed coordinates (x, y) | |||
""" | |||
Tinv = inv(trans) | |||
xy = tformfwd(Tinv, uv) | |||
return xy | |||
def findNonreflectiveSimilarity(uv, xy, options=None): | |||
options = {'K': 2} | |||
K = options['K'] | |||
M = xy.shape[0] | |||
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector | |||
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector | |||
# print('--->x, y:\n', x, y | |||
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) | |||
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) | |||
X = np.vstack((tmp1, tmp2)) | |||
# print('--->X.shape: ', X.shape | |||
# print('X:\n', X | |||
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector | |||
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector | |||
U = np.vstack((u, v)) | |||
# print('--->U.shape: ', U.shape | |||
# print('U:\n', U | |||
# We know that X * r = U | |||
if rank(X) >= 2 * K: | |||
r, _, _, _ = lstsq(X, U) | |||
r = np.squeeze(r) | |||
else: | |||
raise Exception('cp2tform:twoUniquePointsReq') | |||
# print('--->r:\n', r | |||
sc = r[0] | |||
ss = r[1] | |||
tx = r[2] | |||
ty = r[3] | |||
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) | |||
# print('--->Tinv:\n', Tinv | |||
T = inv(Tinv) | |||
# print('--->T:\n', T | |||
T[:, 2] = np.array([0, 0, 1]) | |||
return T, Tinv | |||
def findSimilarity(uv, xy, options=None): | |||
options = {'K': 2} | |||
# uv = np.array(uv) | |||
# xy = np.array(xy) | |||
# Solve for trans1 | |||
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) | |||
# Solve for trans2 | |||
# manually reflect the xy data across the Y-axis | |||
xyR = xy | |||
xyR[:, 0] = -1 * xyR[:, 0] | |||
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) | |||
# manually reflect the tform to undo the reflection done on xyR | |||
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) | |||
trans2 = np.dot(trans2r, TreflectY) | |||
# Figure out if trans1 or trans2 is better | |||
xy1 = tformfwd(trans1, uv) | |||
norm1 = norm(xy1 - xy) | |||
xy2 = tformfwd(trans2, uv) | |||
norm2 = norm(xy2 - xy) | |||
if norm1 <= norm2: | |||
return trans1, trans1_inv | |||
else: | |||
trans2_inv = inv(trans2) | |||
return trans2, trans2_inv | |||
def get_similarity_transform(src_pts, dst_pts, reflective=True): | |||
""" | |||
Function: | |||
---------- | |||
Find Similarity Transform Matrix 'trans': | |||
u = src_pts[:, 0] | |||
v = src_pts[:, 1] | |||
x = dst_pts[:, 0] | |||
y = dst_pts[:, 1] | |||
[x, y, 1] = [u, v, 1] * trans | |||
Parameters: | |||
---------- | |||
@src_pts: Kx2 np.array | |||
source points, each row is a pair of coordinates (x, y) | |||
@dst_pts: Kx2 np.array | |||
destination points, each row is a pair of transformed | |||
coordinates (x, y) | |||
@reflective: True or False | |||
if True: | |||
use reflective similarity transform | |||
else: | |||
use non-reflective similarity transform | |||
Returns: | |||
---------- | |||
@trans: 3x3 np.array | |||
transform matrix from uv to xy | |||
trans_inv: 3x3 np.array | |||
inverse of trans, transform matrix from xy to uv | |||
""" | |||
if reflective: | |||
trans, trans_inv = findSimilarity(src_pts, dst_pts) | |||
else: | |||
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) | |||
return trans, trans_inv | |||
def cvt_tform_mat_for_cv2(trans): | |||
""" | |||
Function: | |||
---------- | |||
Convert Transform Matrix 'trans' into 'cv2_trans' which could be | |||
directly used by cv2.warpAffine(): | |||
u = src_pts[:, 0] | |||
v = src_pts[:, 1] | |||
x = dst_pts[:, 0] | |||
y = dst_pts[:, 1] | |||
[x, y].T = cv_trans * [u, v, 1].T | |||
Parameters: | |||
---------- | |||
@trans: 3x3 np.array | |||
transform matrix from uv to xy | |||
Returns: | |||
---------- | |||
@cv2_trans: 2x3 np.array | |||
transform matrix from src_pts to dst_pts, could be directly used | |||
for cv2.warpAffine() | |||
""" | |||
cv2_trans = trans[:, 0:2].T | |||
return cv2_trans | |||
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): | |||
""" | |||
Function: | |||
---------- | |||
Find Similarity Transform Matrix 'cv2_trans' which could be | |||
directly used by cv2.warpAffine(): | |||
u = src_pts[:, 0] | |||
v = src_pts[:, 1] | |||
x = dst_pts[:, 0] | |||
y = dst_pts[:, 1] | |||
[x, y].T = cv_trans * [u, v, 1].T | |||
Parameters: | |||
---------- | |||
@src_pts: Kx2 np.array | |||
source points, each row is a pair of coordinates (x, y) | |||
@dst_pts: Kx2 np.array | |||
destination points, each row is a pair of transformed | |||
coordinates (x, y) | |||
reflective: True or False | |||
if True: | |||
use reflective similarity transform | |||
else: | |||
use non-reflective similarity transform | |||
Returns: | |||
---------- | |||
@cv2_trans: 2x3 np.array | |||
transform matrix from src_pts to dst_pts, could be directly used | |||
for cv2.warpAffine() | |||
""" | |||
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) | |||
cv2_trans = cvt_tform_mat_for_cv2(trans) | |||
cv2_trans_inv = cvt_tform_mat_for_cv2(trans_inv) | |||
return cv2_trans, cv2_trans_inv | |||
if __name__ == '__main__': | |||
""" | |||
u = [0, 6, -2] | |||
v = [0, 3, 5] | |||
x = [-1, 0, 4] | |||
y = [-1, -10, 4] | |||
# In Matlab, run: | |||
# | |||
# uv = [u'; v']; | |||
# xy = [x'; y']; | |||
# tform_sim=cp2tform(uv,xy,'similarity'); | |||
# | |||
# trans = tform_sim.tdata.T | |||
# ans = | |||
# -0.0764 -1.6190 0 | |||
# 1.6190 -0.0764 0 | |||
# -3.2156 0.0290 1.0000 | |||
# trans_inv = tform_sim.tdata.Tinv | |||
# ans = | |||
# | |||
# -0.0291 0.6163 0 | |||
# -0.6163 -0.0291 0 | |||
# -0.0756 1.9826 1.0000 | |||
# xy_m=tformfwd(tform_sim, u,v) | |||
# | |||
# xy_m = | |||
# | |||
# -3.2156 0.0290 | |||
# 1.1833 -9.9143 | |||
# 5.0323 2.8853 | |||
# uv_m=tforminv(tform_sim, x,y) | |||
# | |||
# uv_m = | |||
# | |||
# 0.5698 1.3953 | |||
# 6.0872 2.2733 | |||
# -2.6570 4.3314 | |||
""" | |||
u = [0, 6, -2] | |||
v = [0, 3, 5] | |||
x = [-1, 0, 4] | |||
y = [-1, -10, 4] | |||
uv = np.array((u, v)).T | |||
xy = np.array((x, y)).T | |||
print('\n--->uv:') | |||
print(uv) | |||
print('\n--->xy:') | |||
print(xy) | |||
trans, trans_inv = get_similarity_transform(uv, xy) | |||
print('\n--->trans matrix:') | |||
print(trans) | |||
print('\n--->trans_inv matrix:') | |||
print(trans_inv) | |||
print('\n---> apply transform to uv') | |||
print('\nxy_m = uv_augmented * trans') | |||
uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1)))) | |||
xy_m = np.dot(uv_aug, trans) | |||
print(xy_m) | |||
print('\nxy_m = tformfwd(trans, uv)') | |||
xy_m = tformfwd(trans, uv) | |||
print(xy_m) | |||
print('\n---> apply inverse transform to xy') | |||
print('\nuv_m = xy_augmented * trans_inv') | |||
xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1)))) | |||
uv_m = np.dot(xy_aug, trans_inv) | |||
print(uv_m) | |||
print('\nuv_m = tformfwd(trans_inv, xy)') | |||
uv_m = tformfwd(trans_inv, xy) | |||
print(uv_m) | |||
uv_m = tforminv(trans, xy) | |||
print('\nuv_m = tforminv(trans, xy)') | |||
print(uv_m) |
@@ -0,0 +1,91 @@ | |||
import os | |||
import cv2 | |||
import numpy as np | |||
def resize_size(image, size=720): | |||
h, w, c = np.shape(image) | |||
if min(h, w) > size: | |||
if h > w: | |||
h, w = int(size * h / w), size | |||
else: | |||
h, w = size, int(size * w / h) | |||
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) | |||
return image | |||
def padTo16x(image): | |||
h, w, c = np.shape(image) | |||
if h % 16 == 0 and w % 16 == 0: | |||
return image, h, w | |||
nh, nw = (h // 16 + 1) * 16, (w // 16 + 1) * 16 | |||
img_new = np.ones((nh, nw, 3), np.uint8) * 255 | |||
img_new[:h, :w, :] = image | |||
return img_new, h, w | |||
def get_f5p(landmarks, np_img): | |||
eye_left = find_pupil(landmarks[36:41], np_img) | |||
eye_right = find_pupil(landmarks[42:47], np_img) | |||
if eye_left is None or eye_right is None: | |||
print('cannot find 5 points with find_puil, used mean instead.!') | |||
eye_left = landmarks[36:41].mean(axis=0) | |||
eye_right = landmarks[42:47].mean(axis=0) | |||
nose = landmarks[30] | |||
mouth_left = landmarks[48] | |||
mouth_right = landmarks[54] | |||
f5p = [[eye_left[0], eye_left[1]], [eye_right[0], eye_right[1]], | |||
[nose[0], nose[1]], [mouth_left[0], mouth_left[1]], | |||
[mouth_right[0], mouth_right[1]]] | |||
return f5p | |||
def find_pupil(landmarks, np_img): | |||
h, w, _ = np_img.shape | |||
xmax = int(landmarks[:, 0].max()) | |||
xmin = int(landmarks[:, 0].min()) | |||
ymax = int(landmarks[:, 1].max()) | |||
ymin = int(landmarks[:, 1].min()) | |||
if ymin >= ymax or xmin >= xmax or ymin < 0 or xmin < 0 or ymax > h or xmax > w: | |||
return None | |||
eye_img_bgr = np_img[ymin:ymax, xmin:xmax, :] | |||
eye_img = cv2.cvtColor(eye_img_bgr, cv2.COLOR_BGR2GRAY) | |||
eye_img = cv2.equalizeHist(eye_img) | |||
n_marks = landmarks - np.array([xmin, ymin]).reshape([1, 2]) | |||
eye_mask = cv2.fillConvexPoly( | |||
np.zeros_like(eye_img), n_marks.astype(np.int32), 1) | |||
ret, thresh = cv2.threshold(eye_img, 100, 255, | |||
cv2.THRESH_BINARY | cv2.THRESH_OTSU) | |||
thresh = (1 - thresh / 255.) * eye_mask | |||
cnt = 0 | |||
xm = [] | |||
ym = [] | |||
for i in range(thresh.shape[0]): | |||
for j in range(thresh.shape[1]): | |||
if thresh[i, j] > 0.5: | |||
xm.append(j) | |||
ym.append(i) | |||
cnt += 1 | |||
if cnt != 0: | |||
xm.sort() | |||
ym.sort() | |||
xm = xm[cnt // 2] | |||
ym = ym[cnt // 2] | |||
else: | |||
xm = thresh.shape[1] / 2 | |||
ym = thresh.shape[0] / 2 | |||
return xm + xmin, ym + ymin | |||
def all_file(file_dir): | |||
L = [] | |||
for root, dirs, files in os.walk(file_dir): | |||
for file in files: | |||
extend = os.path.splitext(file)[1] | |||
if extend == '.png' or extend == '.jpg' or extend == '.jpeg': | |||
L.append(os.path.join(root, file)) | |||
return L |
@@ -1 +1,2 @@ | |||
from .image_cartoon_pipeline import ImageCartoonPipeline | |||
from .image_matting_pipeline import ImageMattingPipeline |
@@ -0,0 +1,149 @@ | |||
import os | |||
from typing import Any, Dict | |||
import cv2 | |||
import numpy as np | |||
import PIL | |||
import tensorflow as tf | |||
from maas_lib.models.cv.cartoon.facelib.facer import FaceAna | |||
from maas_lib.models.cv.cartoon.mtcnn_pytorch.src.align_trans import ( | |||
get_reference_facial_points, warp_and_crop_face) | |||
from maas_lib.models.cv.cartoon.utils import get_f5p, padTo16x, resize_size | |||
from maas_lib.pipelines.base import Input | |||
from maas_lib.preprocessors import load_image | |||
from maas_lib.utils.constant import Tasks | |||
from maas_lib.utils.logger import get_logger | |||
from ..base import Pipeline | |||
from ..builder import PIPELINES | |||
if tf.__version__ >= '2.0': | |||
tf = tf.compat.v1 | |||
tf.disable_eager_execution() | |||
logger = get_logger() | |||
@PIPELINES.register_module( | |||
Tasks.image_generation, module_name='cv_unet_person-image-cartoon') | |||
class ImageCartoonPipeline(Pipeline): | |||
def __init__(self, model: str): | |||
super().__init__(model=model) | |||
self.facer = FaceAna(model) | |||
self.sess_anime_head = self.load_sess( | |||
os.path.join(model, 'cartoon_anime_h.pb'), 'model_anime_head') | |||
self.sess_anime_bg = self.load_sess( | |||
os.path.join(model, 'cartoon_anime_bg.pb'), 'model_anime_bg') | |||
self.box_width = 288 | |||
global_mask = cv2.imread(os.path.join(model, 'alpha.jpg')) | |||
global_mask = cv2.resize( | |||
global_mask, (self.box_width, self.box_width), | |||
interpolation=cv2.INTER_AREA) | |||
self.global_mask = cv2.cvtColor( | |||
global_mask, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0 | |||
def load_sess(self, model_path, name): | |||
config = tf.ConfigProto(allow_soft_placement=True) | |||
config.gpu_options.allow_growth = True | |||
sess = tf.Session(config=config) | |||
logger.info(f'loading model from {model_path}') | |||
with tf.gfile.FastGFile(model_path, 'rb') as f: | |||
graph_def = tf.GraphDef() | |||
graph_def.ParseFromString(f.read()) | |||
sess.graph.as_default() | |||
tf.import_graph_def(graph_def, name=name) | |||
sess.run(tf.global_variables_initializer()) | |||
logger.info(f'load model {model_path} done.') | |||
return sess | |||
def preprocess(self, input: Input) -> Dict[str, Any]: | |||
if isinstance(input, str): | |||
img = np.array(load_image(input)) | |||
elif isinstance(input, PIL.Image.Image): | |||
img = np.array(input.convert('RGB')) | |||
elif isinstance(input, np.ndarray): | |||
if len(input.shape) == 2: | |||
input = cv2.cvtColor(input, cv2.COLOR_GRAY2BGR) | |||
img = input[:, :, ::-1] | |||
else: | |||
raise TypeError(f'input should be either str, PIL.Image,' | |||
f' np.array, but got {type(input)}') | |||
img = img.astype(np.float) | |||
result = {'img': img} | |||
return result | |||
def detect_face(self, img): | |||
src_h, src_w, _ = img.shape | |||
boxes, landmarks, _ = self.facer.run(img) | |||
if boxes.shape[0] == 0: | |||
return None | |||
else: | |||
return landmarks | |||
def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||
img = input['img'].astype(np.uint8) | |||
ori_h, ori_w, _ = img.shape | |||
img = resize_size(img, size=720) | |||
img_brg = img[:, :, ::-1] | |||
landmarks = self.detect_face(img) | |||
if landmarks is None: | |||
print('No face detected!') | |||
return {'output_png': None} | |||
# background process | |||
pad_bg, pad_h, pad_w = padTo16x(img_brg) | |||
bg_res = self.sess_anime_bg.run( | |||
self.sess_anime_bg.graph.get_tensor_by_name( | |||
'model_anime_bg/output_image:0'), | |||
feed_dict={'model_anime_bg/input_image:0': pad_bg}) | |||
res = bg_res[:pad_h, :pad_w, :] | |||
for landmark in landmarks: | |||
# get facial 5 points | |||
f5p = get_f5p(landmark, img_brg) | |||
# face alignment | |||
head_img, trans_inv = warp_and_crop_face( | |||
img, | |||
f5p, | |||
ratio=0.75, | |||
reference_pts=get_reference_facial_points(default_square=True), | |||
crop_size=(self.box_width, self.box_width), | |||
return_trans_inv=True) | |||
# head process | |||
head_res = self.sess_anime_head.run( | |||
self.sess_anime_head.graph.get_tensor_by_name( | |||
'model_anime_head/output_image:0'), | |||
feed_dict={ | |||
'model_anime_head/input_image:0': head_img[:, :, ::-1] | |||
}) | |||
# merge head and background | |||
head_trans_inv = cv2.warpAffine( | |||
head_res, | |||
trans_inv, (np.size(img, 1), np.size(img, 0)), | |||
borderValue=(0, 0, 0)) | |||
mask = self.global_mask | |||
mask_trans_inv = cv2.warpAffine( | |||
mask, | |||
trans_inv, (np.size(img, 1), np.size(img, 0)), | |||
borderValue=(0, 0, 0)) | |||
mask_trans_inv = np.expand_dims(mask_trans_inv, 2) | |||
res = mask_trans_inv * head_trans_inv + (1 - mask_trans_inv) * res | |||
res = cv2.resize(res, (ori_w, ori_h), interpolation=cv2.INTER_AREA) | |||
return {'output_png': res} | |||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
return inputs |
@@ -2,3 +2,4 @@ | |||
-r requirements/pipeline.txt | |||
-r requirements/multi-modal.txt | |||
-r requirements/nlp.txt | |||
-r requirements/cv.txt |
@@ -0,0 +1 @@ | |||
easydict |
@@ -0,0 +1,38 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import os | |||
import unittest | |||
import cv2 | |||
from maas_lib.pipelines import pipeline | |||
from maas_lib.utils.constant import Tasks | |||
def all_file(file_dir): | |||
L = [] | |||
for root, dirs, files in os.walk(file_dir): | |||
for file in files: | |||
extend = os.path.splitext(file)[1] | |||
if extend == '.png' or extend == '.jpg' or extend == '.jpeg' or extend == '.JPG' or extend == '.HEIC': | |||
L.append(os.path.join(root, file)) | |||
return L | |||
class ImageCartoonTest(unittest.TestCase): | |||
def test_run(self): | |||
model_dir = './assets' | |||
if not os.path.exists(model_dir): | |||
os.system( | |||
'wget https://invi-label.oss-cn-shanghai.aliyuncs.com/label/model/cartoon/assets.zip' | |||
) | |||
os.system('unzip assets.zip') | |||
img_cartoon = pipeline(Tasks.image_generation, model=model_dir) | |||
result = img_cartoon(os.path.join(model_dir, 'test.png')) | |||
if result is not None: | |||
cv2.imwrite('result.png', result['output_png']) | |||
if __name__ == '__main__': | |||
unittest.main() |