|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import unittest
-
- from modelscope.models import Model
- from modelscope.outputs import OutputKeys
- from modelscope.pipelines import pipeline
- from modelscope.utils.constant import Tasks
- from modelscope.utils.test_utils import test_level
-
-
- class OfaTasksTest(unittest.TestCase):
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_image_captioning_with_model(self):
- model = Model.from_pretrained(
- 'damo/ofa_image-caption_coco_distilled_en')
- img_captioning = pipeline(
- task=Tasks.image_captioning,
- model=model,
- )
- result = img_captioning(
- {'image': 'data/test/images/image_captioning.png'})
- print(result[OutputKeys.CAPTION])
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_image_captioning_with_name(self):
- img_captioning = pipeline(
- Tasks.image_captioning,
- model='damo/ofa_image-caption_coco_distilled_en')
- result = img_captioning(
- {'image': 'data/test/images/image_captioning.png'})
- print(result[OutputKeys.CAPTION])
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_image_classification_with_model(self):
- model = Model.from_pretrained(
- 'damo/ofa_image-classification_imagenet_large_en')
- ofa_pipe = pipeline(Tasks.image_classification, model=model)
- image = 'data/test/images/image_classification.png'
- input = {'image': image}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_image_classification_with_name(self):
- ofa_pipe = pipeline(
- Tasks.image_classification,
- model='damo/ofa_image-classification_imagenet_large_en')
- image = 'data/test/images/image_classification.png'
- input = {'image': image}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_summarization_with_model(self):
- model = Model.from_pretrained(
- 'damo/ofa_summarization_gigaword_large_en')
- ofa_pipe = pipeline(Tasks.summarization, model=model)
- text = 'five-time world champion michelle kwan withdrew' + \
- 'from the #### us figure skating championships on wednesday ,' + \
- ' but will petition us skating officials for the chance to ' + \
- 'compete at the #### turin olympics .'
- input = {'text': text}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_summarization_with_name(self):
- ofa_pipe = pipeline(
- Tasks.summarization,
- model='damo/ofa_summarization_gigaword_large_en')
- text = 'five-time world champion michelle kwan withdrew' + \
- 'from the #### us figure skating championships on wednesday ,' + \
- ' but will petition us skating officials for the chance to ' +\
- 'compete at the #### turin olympics .'
- input = {'text': text}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_text_classification_with_model(self):
- model = Model.from_pretrained(
- 'damo/ofa_text-classification_mnli_large_en')
- ofa_pipe = pipeline(Tasks.text_classification, model=model)
- text = 'One of our number will carry out your instructions minutely.'
- text2 = 'A member of my team will execute your orders with immense precision.'
- input = {'text': text, 'text2': text2}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_text_classification_with_name(self):
- ofa_pipe = pipeline(
- Tasks.text_classification,
- model='damo/ofa_text-classification_mnli_large_en')
- text = 'One of our number will carry out your instructions minutely.'
- text2 = 'A member of my team will execute your orders with immense precision.'
- input = {'text': text, 'text2': text2}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_visual_entailment_with_model(self):
- model = Model.from_pretrained(
- 'damo/ofa_visual-entailment_snli-ve_large_en')
- ofa_pipe = pipeline(Tasks.visual_entailment, model=model)
- image = 'data/test/images/dogs.jpg'
- text = 'there are two birds.'
- input = {'image': image, 'text': text}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_visual_entailment_with_name(self):
- ofa_pipe = pipeline(
- Tasks.visual_entailment,
- model='damo/ofa_visual-entailment_snli-ve_large_en')
- image = 'data/test/images/dogs.jpg'
- text = 'there are two birds.'
- input = {'image': image, 'text': text}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_visual_grounding_with_model(self):
- model = Model.from_pretrained(
- 'damo/ofa_visual-grounding_refcoco_large_en')
- ofa_pipe = pipeline(Tasks.visual_grounding, model=model)
- image = 'data/test/images/visual_grounding.png'
- text = 'a blue turtle-like pokemon with round head'
- input = {'image': image, 'text': text}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_visual_grounding_with_name(self):
- ofa_pipe = pipeline(
- Tasks.visual_grounding,
- model='damo/ofa_visual-grounding_refcoco_large_en')
- image = 'data/test/images/visual_grounding.png'
- text = 'a blue turtle-like pokemon with round head'
- input = {'image': image, 'text': text}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_visual_question_answering_with_model(self):
- from modelscope.preprocessors.multi_modal import OfaPreprocessor
- model = Model.from_pretrained(
- 'damo/ofa_visual-question-answering_pretrain_large_en')
- preprocessor = OfaPreprocessor(model_dir=model.model_dir)
- ofa_pipe = pipeline(
- Tasks.visual_question_answering,
- model=model,
- preprocessor=preprocessor)
- image = 'data/test/images/visual_question_answering.png'
- text = 'what is grown on the plant?'
- input = {'image': image, 'text': text}
- result = ofa_pipe(input)
- print(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_visual_question_answering_with_name(self):
- from modelscope.preprocessors.multi_modal import OfaPreprocessor
- model = 'damo/ofa_visual-question-answering_pretrain_large_en'
- preprocessor = OfaPreprocessor(model_dir=model)
- ofa_pipe = pipeline(
- Tasks.visual_question_answering,
- model=model,
- preprocessor=preprocessor)
- image = 'data/test/images/visual_question_answering.png'
- text = 'what is grown on the plant?'
- input = {'image': image, 'text': text}
- result = ofa_pipe(input)
- print(result)
-
-
- if __name__ == '__main__':
- unittest.main()
|