|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- from typing import Any, Dict, Optional
-
- from maas_lib.trainers.nlp.space.trainers.intent_trainer import IntentTrainer
- from maas_lib.utils.constant import Tasks
- from ...base import Model, Tensor
- from ...builder import MODELS
- from .model.generator import Generator
- from .model.model_base import ModelBase
-
- __all__ = ['DialogIntentModel']
-
-
- @MODELS.register_module(Tasks.dialog_intent, module_name=r'space-intent')
- class DialogIntentModel(Model):
-
- def __init__(self, model_dir: str, *args, **kwargs):
- """initialize the test generation model from the `model_dir` path.
-
- Args:
- model_dir (str): the model path.
- model_cls (Optional[Any], optional): model loader, if None, use the
- default loader to load model weights, by default None.
- """
-
- super().__init__(model_dir, *args, **kwargs)
- self.model_dir = model_dir
- self.text_field = kwargs.pop('text_field')
- self.config = kwargs.pop('config')
- self.generator = Generator.create(self.config, reader=self.text_field)
- self.model = ModelBase.create(
- model_dir=model_dir,
- config=self.config,
- reader=self.text_field,
- generator=self.generator)
-
- def to_tensor(array):
- """
- numpy array -> tensor
- """
- import torch
- array = torch.tensor(array)
- return array.cuda() if self.config.use_gpu else array
-
- self.trainer = IntentTrainer(
- model=self.model,
- to_tensor=to_tensor,
- config=self.config,
- reader=self.text_field)
- self.trainer.load()
-
- def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]:
- """return the result by the model
-
- Args:
- input (Dict[str, Any]): the preprocessed data
-
- Returns:
- Dict[str, np.ndarray]: results
- Example:
- {
- 'predictions': array([1]), # lable 0-negative 1-positive
- 'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32),
- 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value
- }
- """
- from numpy import array, float32
- import torch
- print('--forward--')
- result = self.trainer.forward(input)
-
- return result
|