You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_evaluation_hook.py 3.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. import json
  7. import numpy as np
  8. import torch
  9. from torch import nn
  10. from modelscope.metainfo import Trainers
  11. from modelscope.metrics.builder import METRICS, MetricKeys
  12. from modelscope.trainers import build_trainer
  13. from modelscope.utils.constant import LogKeys, ModelFile
  14. from modelscope.utils.registry import default_group
  15. from modelscope.utils.test_utils import create_dummy_test_dataset
  16. def create_dummy_metric():
  17. @METRICS.register_module(
  18. group_key=default_group, module_name='DummyMetric', force=True)
  19. class DummyMetric:
  20. def add(*args, **kwargs):
  21. pass
  22. def evaluate(self):
  23. return {MetricKeys.ACCURACY: 0.5}
  24. dummy_dataset = create_dummy_test_dataset(
  25. np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
  26. class DummyModel(nn.Module):
  27. def __init__(self):
  28. super().__init__()
  29. self.linear = nn.Linear(5, 4)
  30. self.bn = nn.BatchNorm1d(4)
  31. def forward(self, feat, labels):
  32. x = self.linear(feat)
  33. x = self.bn(x)
  34. loss = torch.sum(x)
  35. return dict(logits=x, loss=loss)
  36. class EvaluationHookTest(unittest.TestCase):
  37. def setUp(self):
  38. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  39. self.tmp_dir = tempfile.TemporaryDirectory().name
  40. if not os.path.exists(self.tmp_dir):
  41. os.makedirs(self.tmp_dir)
  42. create_dummy_metric()
  43. def tearDown(self):
  44. super().tearDown()
  45. shutil.rmtree(self.tmp_dir)
  46. def test_evaluation_hook(self):
  47. json_cfg = {
  48. 'task': 'image_classification',
  49. 'train': {
  50. 'work_dir': self.tmp_dir,
  51. 'dataloader': {
  52. 'batch_size_per_gpu': 2,
  53. 'workers_per_gpu': 1
  54. },
  55. 'optimizer': {
  56. 'type': 'SGD',
  57. 'lr': 0.01,
  58. },
  59. 'lr_scheduler': {
  60. 'type': 'StepLR',
  61. 'step_size': 2,
  62. },
  63. 'hooks': [{
  64. 'type': 'EvaluationHook',
  65. 'interval': 1,
  66. }]
  67. },
  68. 'evaluation': {
  69. 'dataloader': {
  70. 'batch_size_per_gpu': 2,
  71. 'workers_per_gpu': 1,
  72. 'shuffle': False
  73. },
  74. 'metrics': ['DummyMetric']
  75. }
  76. }
  77. config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
  78. with open(config_path, 'w') as f:
  79. json.dump(json_cfg, f)
  80. trainer_name = Trainers.default
  81. kwargs = dict(
  82. cfg_file=config_path,
  83. model=DummyModel(),
  84. data_collator=None,
  85. train_dataset=dummy_dataset,
  86. eval_dataset=dummy_dataset,
  87. max_epochs=1)
  88. trainer = build_trainer(trainer_name, kwargs)
  89. trainer.train()
  90. self.assertDictEqual(trainer.metric_values, {'accuracy': 0.5})
  91. if __name__ == '__main__':
  92. unittest.main()