You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_face_recognition.py 1.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os.path as osp
  3. import tempfile
  4. import unittest
  5. import cv2
  6. import numpy as np
  7. from modelscope.fileio import File
  8. from modelscope.msdatasets import MsDataset
  9. from modelscope.outputs import OutputKeys
  10. from modelscope.pipelines import pipeline
  11. from modelscope.utils.constant import ModelFile, Tasks
  12. from modelscope.utils.test_utils import test_level
  13. class FaceRecognitionTest(unittest.TestCase):
  14. def setUp(self) -> None:
  15. self.recog_model_id = 'damo/cv_ir101_facerecognition_cfglint'
  16. self.det_model_id = 'damo/cv_resnet_facedetection_scrfd10gkps'
  17. @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
  18. def test_face_compare(self):
  19. img1 = 'data/test/images/face_recognition_1.png'
  20. img2 = 'data/test/images/face_recognition_2.png'
  21. face_detection = pipeline(
  22. Tasks.face_detection, model=self.det_model_id)
  23. face_recognition = pipeline(
  24. Tasks.face_recognition,
  25. face_detection=face_detection,
  26. model=self.recog_model_id)
  27. # note that for dataset output, the inference-output is a Generator that can be iterated.
  28. emb1 = face_recognition(img1)[OutputKeys.IMG_EMBEDDING]
  29. emb2 = face_recognition(img2)[OutputKeys.IMG_EMBEDDING]
  30. sim = np.dot(emb1[0], emb2[0])
  31. print(f'Cos similarity={sim:.3f}, img1:{img1} img2:{img2}')
  32. if __name__ == '__main__':
  33. unittest.main()