You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_referring_video_object_segmentation_trainer.py 3.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. import zipfile
  7. from modelscope.hub.snapshot_download import snapshot_download
  8. from modelscope.metainfo import Trainers
  9. from modelscope.models.cv.movie_scene_segmentation import \
  10. MovieSceneSegmentationModel
  11. from modelscope.msdatasets import MsDataset
  12. from modelscope.trainers import build_trainer
  13. from modelscope.utils.config import Config, ConfigDict
  14. from modelscope.utils.constant import ModelFile
  15. from modelscope.utils.test_utils import test_level
  16. class TestImageInstanceSegmentationTrainer(unittest.TestCase):
  17. model_id = 'damo/cv_swin-t_referring_video-object-segmentation'
  18. dataset_name = 'referring_vos_toydata'
  19. def setUp(self):
  20. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  21. cache_path = snapshot_download(self.model_id)
  22. config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
  23. cfg = Config.from_file(config_path)
  24. max_epochs = cfg.train.max_epochs
  25. train_data_cfg = ConfigDict(
  26. name=self.dataset_name,
  27. split='train',
  28. test_mode=False,
  29. cfg=cfg.dataset)
  30. test_data_cfg = ConfigDict(
  31. name=self.dataset_name,
  32. split='test',
  33. test_mode=True,
  34. cfg=cfg.dataset)
  35. self.train_dataset = MsDataset.load(
  36. dataset_name=train_data_cfg.name,
  37. split=train_data_cfg.split,
  38. cfg=train_data_cfg.cfg,
  39. namespace='damo',
  40. test_mode=train_data_cfg.test_mode)
  41. assert next(
  42. iter(self.train_dataset.config_kwargs['split_config'].values()))
  43. self.test_dataset = MsDataset.load(
  44. dataset_name=test_data_cfg.name,
  45. split=test_data_cfg.split,
  46. cfg=test_data_cfg.cfg,
  47. namespace='damo',
  48. test_mode=test_data_cfg.test_mode)
  49. assert next(
  50. iter(self.test_dataset.config_kwargs['split_config'].values()))
  51. self.max_epochs = max_epochs
  52. @unittest.skip('skip since the model is set to private for now')
  53. def test_trainer(self):
  54. kwargs = dict(
  55. model=self.model_id,
  56. train_dataset=self.train_dataset,
  57. eval_dataset=self.test_dataset,
  58. work_dir='./work_dir')
  59. trainer = build_trainer(
  60. name=Trainers.referring_video_object_segmentation,
  61. default_args=kwargs)
  62. trainer.train()
  63. results_files = os.listdir(trainer.work_dir)
  64. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  65. @unittest.skip('skip since the model is set to private for now')
  66. def test_trainer_with_model_and_args(self):
  67. cache_path = snapshot_download(self.model_id)
  68. model = MovieSceneSegmentationModel.from_pretrained(cache_path)
  69. kwargs = dict(
  70. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  71. model=model,
  72. train_dataset=self.train_dataset,
  73. eval_dataset=self.test_dataset,
  74. work_dir='./work_dir')
  75. trainer = build_trainer(
  76. name=Trainers.referring_video_object_segmentation,
  77. default_args=kwargs)
  78. trainer.train()
  79. results_files = os.listdir(trainer.work_dir)
  80. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  81. if __name__ == '__main__':
  82. unittest.main()