You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_finetune_mplug.py 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. from modelscope.hub.snapshot_download import snapshot_download
  7. from modelscope.metainfo import Trainers
  8. from modelscope.models.multi_modal import MPlugForAllTasks
  9. from modelscope.msdatasets import MsDataset
  10. from modelscope.trainers import EpochBasedTrainer, build_trainer
  11. from modelscope.utils.constant import ModelFile, Tasks
  12. from modelscope.utils.test_utils import test_level
  13. class TestFinetuneMPlug(unittest.TestCase):
  14. def setUp(self):
  15. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  16. self.tmp_dir = tempfile.TemporaryDirectory().name
  17. if not os.path.exists(self.tmp_dir):
  18. os.makedirs(self.tmp_dir)
  19. datadict = MsDataset.load('coco_captions_small_slice')
  20. self.train_dataset = MsDataset(
  21. datadict['train'].remap_columns({
  22. 'image:FILE': 'image',
  23. 'answer:Value': 'answer'
  24. }).map(lambda _: {'question': 'what the picture describes?'}))
  25. self.test_dataset = MsDataset(
  26. datadict['test'].remap_columns({
  27. 'image:FILE': 'image',
  28. 'answer:Value': 'answer'
  29. }).map(lambda _: {'question': 'what the picture describes?'}))
  30. self.max_epochs = 2
  31. def tearDown(self):
  32. shutil.rmtree(self.tmp_dir)
  33. super().tearDown()
  34. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  35. def test_trainer_with_caption(self):
  36. kwargs = dict(
  37. model='damo/mplug_backbone_base_en',
  38. train_dataset=self.train_dataset,
  39. eval_dataset=self.test_dataset,
  40. max_epochs=self.max_epochs,
  41. work_dir=self.tmp_dir,
  42. task=Tasks.image_captioning)
  43. trainer: EpochBasedTrainer = build_trainer(
  44. name=Trainers.mplug, default_args=kwargs)
  45. trainer.train()
  46. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  47. def test_trainer_with_caption_with_model_and_args(self):
  48. cache_path = snapshot_download('damo/mplug_backbone_base_en')
  49. model = MPlugForAllTasks.from_pretrained(
  50. cache_path, task=Tasks.image_captioning)
  51. kwargs = dict(
  52. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  53. model=model,
  54. train_dataset=self.train_dataset,
  55. eval_dataset=self.test_dataset,
  56. max_epochs=self.max_epochs,
  57. work_dir=self.tmp_dir)
  58. trainer: EpochBasedTrainer = build_trainer(
  59. name=Trainers.mplug, default_args=kwargs)
  60. trainer.train()
  61. results_files = os.listdir(self.tmp_dir)
  62. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  63. for i in range(self.max_epochs):
  64. self.assertIn(f'epoch_{i+1}.pth', results_files)
  65. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  66. def test_trainer_with_vqa(self):
  67. kwargs = dict(
  68. model='damo/mplug_backbone_base_en',
  69. train_dataset=self.train_dataset,
  70. eval_dataset=self.test_dataset,
  71. max_epochs=self.max_epochs,
  72. work_dir=self.tmp_dir,
  73. task=Tasks.visual_question_answering)
  74. trainer: EpochBasedTrainer = build_trainer(
  75. name=Trainers.mplug, default_args=kwargs)
  76. trainer.train()
  77. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  78. def test_trainer_with_vqa_with_model_and_args(self):
  79. cache_path = snapshot_download(
  80. 'damo/mplug_visual-question-answering_coco_large_en')
  81. model = MPlugForAllTasks.from_pretrained(
  82. cache_path, task=Tasks.visual_question_answering)
  83. kwargs = dict(
  84. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  85. model=model,
  86. train_dataset=self.train_dataset,
  87. eval_dataset=self.test_dataset,
  88. max_epochs=self.max_epochs,
  89. work_dir=self.tmp_dir)
  90. trainer: EpochBasedTrainer = build_trainer(
  91. name=Trainers.mplug, default_args=kwargs)
  92. trainer.train()
  93. results_files = os.listdir(self.tmp_dir)
  94. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  95. for i in range(self.max_epochs):
  96. self.assertIn(f'epoch_{i+1}.pth', results_files)
  97. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  98. def test_trainer_with_retrieval(self):
  99. kwargs = dict(
  100. model='damo/mplug_backbone_base_en',
  101. train_dataset=self.train_dataset,
  102. eval_dataset=self.test_dataset,
  103. max_epochs=self.max_epochs,
  104. work_dir=self.tmp_dir,
  105. task=Tasks.image_text_retrieval)
  106. trainer: EpochBasedTrainer = build_trainer(
  107. name=Trainers.mplug, default_args=kwargs)
  108. trainer.train()
  109. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  110. def test_trainer_with_retrieval_with_model_and_args(self):
  111. cache_path = snapshot_download('damo/mplug_backbone_base_en')
  112. model = MPlugForAllTasks.from_pretrained(
  113. cache_path, task=Tasks.image_text_retrieval)
  114. kwargs = dict(
  115. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  116. model=model,
  117. train_dataset=self.train_dataset,
  118. eval_dataset=self.test_dataset,
  119. max_epochs=self.max_epochs,
  120. work_dir=self.tmp_dir)
  121. trainer: EpochBasedTrainer = build_trainer(
  122. name=Trainers.mplug, default_args=kwargs)
  123. trainer.train()
  124. results_files = os.listdir(self.tmp_dir)
  125. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  126. for i in range(self.max_epochs):
  127. self.assertIn(f'epoch_{i+1}.pth', results_files)
  128. if __name__ == '__main__':
  129. unittest.main()