You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_deberta_tasks.py 2.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import unittest
  3. import torch
  4. from modelscope.hub.snapshot_download import snapshot_download
  5. from modelscope.models import Model
  6. from modelscope.models.nlp import DebertaV2ForMaskedLM
  7. from modelscope.pipelines import pipeline
  8. from modelscope.pipelines.nlp import FillMaskPipeline
  9. from modelscope.preprocessors import NLPPreprocessor
  10. from modelscope.utils.constant import Tasks
  11. from modelscope.utils.test_utils import test_level
  12. class DeBERTaV2TaskTest(unittest.TestCase):
  13. model_id_deberta = 'damo/nlp_debertav2_fill-mask_chinese-lite'
  14. ori_text = '你师父差得动你,你师父可差不动我。'
  15. test_input = '你师父差得动你,你师父可[MASK]不动我。'
  16. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  17. def test_run_by_direct_model_download(self):
  18. model_dir = snapshot_download(self.model_id_deberta)
  19. preprocessor = NLPPreprocessor(
  20. model_dir, first_sequence='sentence', second_sequence=None)
  21. model = DebertaV2ForMaskedLM.from_pretrained(model_dir)
  22. pipeline1 = FillMaskPipeline(model, preprocessor)
  23. pipeline2 = pipeline(
  24. Tasks.fill_mask, model=model, preprocessor=preprocessor)
  25. ori_text = self.ori_text
  26. test_input = self.test_input
  27. print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: '
  28. f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n')
  29. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  30. def test_run_with_model_from_modelhub(self):
  31. # sbert
  32. print(self.model_id_deberta)
  33. model = Model.from_pretrained(self.model_id_deberta)
  34. preprocessor = NLPPreprocessor(
  35. model.model_dir, first_sequence='sentence', second_sequence=None)
  36. pipeline_ins = pipeline(
  37. task=Tasks.fill_mask, model=model, preprocessor=preprocessor)
  38. print(
  39. f'\nori_text: {self.ori_text}\ninput: {self.test_input}\npipeline: '
  40. f'{pipeline_ins(self.test_input)}\n')
  41. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  42. def test_run_with_model_name(self):
  43. pipeline_ins = pipeline(
  44. task=Tasks.fill_mask, model=self.model_id_deberta)
  45. ori_text = self.ori_text
  46. test_input = self.test_input
  47. print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: '
  48. f'{pipeline_ins(test_input)}\n')
  49. if __name__ == '__main__':
  50. unittest.main()