You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

quick_start.md 1.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # 快速开始
  2. ## 环境准备
  3. 方式一: whl包安装, 执行如下命令
  4. ```shell
  5. pip install http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/release/maas_lib-0.1.0-py3-none-any.whl
  6. ```
  7. 方式二: 源码环境指定, 适合本地开发调试使用,修改源码后可以直接执行
  8. ```shell
  9. git clone git@gitlab.alibaba-inc.com:Ali-MaaS/MaaS-lib.git maaslib
  10. git fetch origin release/0.1
  11. git checkout release/0.1
  12. cd maaslib
  13. #安装依赖
  14. pip install -r requirements.txt
  15. # 设置PYTHONPATH
  16. export PYTHONPATH=`pwd`
  17. ```
  18. 备注: mac arm cpu暂时由于依赖包版本问题会导致requirements暂时无法安装,请使用mac intel cpu, linux cpu/gpu机器测试。
  19. ## 训练
  20. to be done
  21. ## 评估
  22. to be done
  23. ## 推理
  24. to be done
  25. <!-- pipeline函数提供了简洁的推理接口,示例如下
  26. 注: 这里提供的接口是完成和modelhub打通后的接口,暂时不支持使用。pipeline使用示例请参考 [pipelien tutorial](tutorials/pipeline.md)给出的示例。
  27. ```python
  28. import cv2
  29. from maas_lib.pipelines import pipeline
  30. # 根据任务名创建pipeline
  31. img_matting = pipeline('image-matting')
  32. # 根据任务和模型名创建pipeline
  33. img_matting = pipeline('image-matting', model='damo/image-matting-person')
  34. # 自定义模型和预处理创建pipeline
  35. model = Model.from_pretrained('damo/xxx')
  36. preprocessor = Preprocessor.from_pretrained(cfg)
  37. img_matting = pipeline('image-matting', model=model, preprocessor=preprocessor)
  38. # 推理
  39. result = img_matting(
  40. 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png'
  41. )
  42. # 保存结果图片
  43. cv2.imwrite('result.png', result['output_png'])
  44. ``` -->

致力于通过开放的社区合作,开源AI模型以及相关创新技术,推动基于模型即服务的生态繁荣发展