You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_timer_hook.py 4.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. from abc import ABCMeta
  7. import json
  8. import torch
  9. from torch import nn
  10. from torch.optim import SGD
  11. from torch.optim.lr_scheduler import MultiStepLR
  12. from torch.utils.data import Dataset
  13. from modelscope.trainers import build_trainer
  14. from modelscope.utils.constant import ModelFile
  15. class DummyDataset(Dataset, metaclass=ABCMeta):
  16. """Base Dataset
  17. """
  18. def __len__(self):
  19. return 10
  20. def __getitem__(self, idx):
  21. return dict(feat=torch.rand((5, )), label=torch.randint(0, 4, (1, )))
  22. class DummyModel(nn.Module):
  23. def __init__(self):
  24. super().__init__()
  25. self.linear = nn.Linear(5, 4)
  26. self.bn = nn.BatchNorm1d(4)
  27. def forward(self, feat, labels):
  28. x = self.linear(feat)
  29. x = self.bn(x)
  30. loss = torch.sum(x)
  31. return dict(logits=x, loss=loss)
  32. class IterTimerHookTest(unittest.TestCase):
  33. def setUp(self):
  34. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  35. self.tmp_dir = tempfile.TemporaryDirectory().name
  36. if not os.path.exists(self.tmp_dir):
  37. os.makedirs(self.tmp_dir)
  38. def tearDown(self):
  39. super().tearDown()
  40. shutil.rmtree(self.tmp_dir)
  41. def test_iter_time_hook(self):
  42. json_cfg = {
  43. 'task': 'image_classification',
  44. 'train': {
  45. 'work_dir': self.tmp_dir,
  46. 'dataloader': {
  47. 'batch_size_per_gpu': 2,
  48. 'workers_per_gpu': 1
  49. },
  50. 'hooks': [{
  51. 'type': 'IterTimerHook',
  52. }]
  53. }
  54. }
  55. config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
  56. with open(config_path, 'w') as f:
  57. json.dump(json_cfg, f)
  58. model = DummyModel()
  59. optimizer = SGD(model.parameters(), lr=0.01)
  60. lr_scheduler = MultiStepLR(optimizer, milestones=[2, 4])
  61. trainer_name = 'EpochBasedTrainer'
  62. kwargs = dict(
  63. cfg_file=config_path,
  64. model=model,
  65. train_dataset=DummyDataset(),
  66. optimizers=(optimizer, lr_scheduler),
  67. max_epochs=5)
  68. trainer = build_trainer(trainer_name, kwargs)
  69. train_dataloader = trainer._build_dataloader_with_dataset(
  70. trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
  71. trainer.register_optimizers_hook()
  72. trainer.register_hook_from_cfg(trainer.cfg.train.hooks)
  73. trainer.invoke_hook('before_run')
  74. for i in range(trainer._epoch, trainer._max_epochs):
  75. trainer.invoke_hook('before_train_epoch')
  76. for _, data_batch in enumerate(train_dataloader):
  77. trainer.invoke_hook('before_train_iter')
  78. trainer.train_step(trainer.model, data_batch)
  79. trainer.invoke_hook('after_train_iter')
  80. self.assertIn('data_load_time', trainer.log_buffer.val_history)
  81. self.assertIn('time', trainer.log_buffer.val_history)
  82. self.assertIn('loss', trainer.log_buffer.val_history)
  83. trainer.invoke_hook('after_train_epoch')
  84. target_len = 5 * (i + 1)
  85. self.assertEqual(
  86. len(trainer.log_buffer.val_history['data_load_time']),
  87. target_len)
  88. self.assertEqual(
  89. len(trainer.log_buffer.val_history['time']), target_len)
  90. self.assertEqual(
  91. len(trainer.log_buffer.val_history['loss']), target_len)
  92. self.assertEqual(
  93. len(trainer.log_buffer.n_history['data_load_time']),
  94. target_len)
  95. self.assertEqual(
  96. len(trainer.log_buffer.n_history['time']), target_len)
  97. self.assertEqual(
  98. len(trainer.log_buffer.n_history['loss']), target_len)
  99. trainer.invoke_hook('after_run')
  100. if __name__ == '__main__':
  101. unittest.main()