|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
- from abc import ABCMeta
-
- import json
- import torch
- from torch import nn
- from torch.optim import SGD
- from torch.optim.lr_scheduler import MultiStepLR
- from torch.utils.data import Dataset
-
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import ModelFile
-
-
- class DummyDataset(Dataset, metaclass=ABCMeta):
- """Base Dataset
- """
-
- def __len__(self):
- return 10
-
- def __getitem__(self, idx):
- return dict(feat=torch.rand((5, )), label=torch.randint(0, 4, (1, )))
-
-
- class DummyModel(nn.Module):
-
- def __init__(self):
- super().__init__()
- self.linear = nn.Linear(5, 4)
- self.bn = nn.BatchNorm1d(4)
-
- def forward(self, feat, labels):
- x = self.linear(feat)
-
- x = self.bn(x)
- loss = torch.sum(x)
- return dict(logits=x, loss=loss)
-
-
- class IterTimerHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- def test_iter_time_hook(self):
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'hooks': [{
- 'type': 'IterTimerHook',
- }]
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- optimizer = SGD(model.parameters(), lr=0.01)
- lr_scheduler = MultiStepLR(optimizer, milestones=[2, 4])
- trainer_name = 'EpochBasedTrainer'
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- train_dataset=DummyDataset(),
- optimizers=(optimizer, lr_scheduler),
- max_epochs=5)
-
- trainer = build_trainer(trainer_name, kwargs)
- train_dataloader = trainer._build_dataloader_with_dataset(
- trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
- trainer.register_optimizers_hook()
- trainer.register_hook_from_cfg(trainer.cfg.train.hooks)
-
- trainer.invoke_hook('before_run')
- for i in range(trainer._epoch, trainer._max_epochs):
- trainer.invoke_hook('before_train_epoch')
- for _, data_batch in enumerate(train_dataloader):
- trainer.invoke_hook('before_train_iter')
- trainer.train_step(trainer.model, data_batch)
- trainer.invoke_hook('after_train_iter')
-
- self.assertIn('data_load_time', trainer.log_buffer.val_history)
- self.assertIn('time', trainer.log_buffer.val_history)
- self.assertIn('loss', trainer.log_buffer.val_history)
-
- trainer.invoke_hook('after_train_epoch')
-
- target_len = 5 * (i + 1)
- self.assertEqual(
- len(trainer.log_buffer.val_history['data_load_time']),
- target_len)
- self.assertEqual(
- len(trainer.log_buffer.val_history['time']), target_len)
- self.assertEqual(
- len(trainer.log_buffer.val_history['loss']), target_len)
-
- self.assertEqual(
- len(trainer.log_buffer.n_history['data_load_time']),
- target_len)
- self.assertEqual(
- len(trainer.log_buffer.n_history['time']), target_len)
- self.assertEqual(
- len(trainer.log_buffer.n_history['loss']), target_len)
-
- trainer.invoke_hook('after_run')
-
-
- if __name__ == '__main__':
- unittest.main()
|