You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_sparsity_hook.py 3.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. import json
  7. import numpy as np
  8. import torch
  9. from torch import nn
  10. from torch.optim import SGD
  11. from torch.optim.lr_scheduler import MultiStepLR
  12. from modelscope.metainfo import Trainers
  13. from modelscope.models.base import Model
  14. from modelscope.trainers import build_trainer
  15. from modelscope.utils.constant import ModelFile, TrainerStages
  16. from modelscope.utils.test_utils import create_dummy_test_dataset
  17. dummy_dataset = create_dummy_test_dataset(
  18. np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 10)
  19. class DummyModel(nn.Module, Model):
  20. def __init__(self):
  21. super().__init__()
  22. self.linear = nn.Linear(5, 10)
  23. self.bn = nn.BatchNorm1d(10)
  24. def forward(self, feat, labels):
  25. x = self.linear(feat)
  26. x = self.bn(x)
  27. loss = torch.sum(x)
  28. return dict(logits=x, loss=loss)
  29. class SparsityHookTest(unittest.TestCase):
  30. def setUp(self):
  31. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  32. self.tmp_dir = tempfile.TemporaryDirectory().name
  33. if not os.path.exists(self.tmp_dir):
  34. os.makedirs(self.tmp_dir)
  35. def tearDown(self):
  36. super().tearDown()
  37. shutil.rmtree(self.tmp_dir)
  38. def test_sparsity_hook(self):
  39. json_cfg = {
  40. 'task': 'image_classification',
  41. 'train': {
  42. 'work_dir':
  43. self.tmp_dir,
  44. 'dataloader': {
  45. 'batch_size_per_gpu': 2,
  46. 'workers_per_gpu': 1
  47. },
  48. 'hooks': [{
  49. 'type': 'SparsityHook',
  50. 'pruning_method': 'pst',
  51. 'config': {
  52. 'weight_rank': 1,
  53. 'mask_rank': 1,
  54. 'final_sparsity': 0.9,
  55. 'frequency': 1,
  56. },
  57. }],
  58. },
  59. }
  60. config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
  61. with open(config_path, 'w') as f:
  62. json.dump(json_cfg, f)
  63. model = DummyModel()
  64. optimizer = SGD(model.parameters(), lr=0.01)
  65. lr_scheduler = MultiStepLR(optimizer, milestones=[2, 4])
  66. trainer_name = Trainers.default
  67. kwargs = dict(
  68. cfg_file=config_path,
  69. model=model,
  70. train_dataset=dummy_dataset,
  71. optimizers=(optimizer, lr_scheduler),
  72. max_epochs=5,
  73. device='cpu',
  74. )
  75. trainer = build_trainer(trainer_name, kwargs)
  76. train_dataloader = trainer._build_dataloader_with_dataset(
  77. trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
  78. trainer.register_optimizers_hook()
  79. trainer.register_hook_from_cfg(trainer.cfg.train.hooks)
  80. trainer.train_dataloader = train_dataloader
  81. trainer.data_loader = train_dataloader
  82. trainer.invoke_hook(TrainerStages.before_run)
  83. for i in range(trainer._epoch, trainer._max_epochs):
  84. trainer.invoke_hook(TrainerStages.before_train_epoch)
  85. for _, data_batch in enumerate(train_dataloader):
  86. trainer.invoke_hook(TrainerStages.before_train_iter)
  87. trainer.train_step(trainer.model, data_batch)
  88. trainer.invoke_hook(TrainerStages.after_train_iter)
  89. trainer.invoke_hook(TrainerStages.after_train_epoch)
  90. trainer.invoke_hook(TrainerStages.after_run)
  91. self.assertEqual(
  92. torch.mean(1.0 * (trainer.model.linear.weight == 0)), 0.9)
  93. if __name__ == '__main__':
  94. unittest.main()