|
- import jittor as jt
- from jittor import init
- import argparse
- import os
- import numpy as np
- import math
- from jittor import nn
-
- if jt.has_cuda:
- jt.flags.use_cuda = 1
-
- parser = argparse.ArgumentParser()
- parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs of training')
- parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
- parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
- parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
- parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
- parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
- parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
- parser.add_argument('--n_classes', type=int, default=10, help='number of classes for dataset')
- parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
- parser.add_argument('--channels', type=int, default=1, help='number of image channels')
- parser.add_argument('--sample_interval', type=int, default=1000, help='interval between image sampling')
- opt = parser.parse_args()
- print(opt)
-
- img_shape = (opt.channels, opt.img_size, opt.img_size)
-
-
- class Generator(nn.Module):
- def __init__(self):
- super(Generator, self).__init__()
- self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)
-
- # nn.Linear(in_dim, out_dim)表示全连接层
- # in_dim:输入向量维度
- # out_dim:输出向量维度
- def block(in_feat, out_feat, normalize=True):
- layers = [nn.Linear(in_feat, out_feat)]
- if normalize:
- layers.append(nn.BatchNorm1d(out_feat, 0.8))
- layers.append(nn.LeakyReLU(0.2))
- return layers
-
- self.model = nn.Sequential(*block((opt.latent_dim + opt.n_classes), 128, normalize=False),
- *block(128, 256),
- *block(256, 512),
- *block(512, 1024),
- nn.Linear(1024, int(np.prod(img_shape))),
- nn.Tanh())
-
- def execute(self, noise, labels):
- gen_input = jt.contrib.concat((self.label_emb(labels), noise), dim=1)
- img = self.model(gen_input)
- # 将img从1024维向量变为32*32矩阵
- img = img.view((img.shape[0], *img_shape))
- return img
-
-
- class Discriminator(nn.Module):
-
- def __init__(self):
- super(Discriminator, self).__init__()
- self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
- self.model = nn.Sequential(nn.Linear((opt.n_classes + int(np.prod(img_shape))), 512),
- nn.LeakyReLU(0.2),
- nn.Linear(512, 512),
- nn.Dropout(0.4),
- nn.LeakyReLU(0.2),
- nn.Linear(512, 512),
- nn.Dropout(0.4),
- nn.LeakyReLU(0.2),
- nn.Linear(512, 1),
- nn.LeakyReLU(0.2)
- # TODO: 添加最后一个线性层,最终输出为一个实数
- )
-
- def execute(self, img, labels):
- d_in = jt.contrib.concat((img.view((img.shape[0], (- 1))), self.label_embedding(labels)), dim=1)
-
- d_out = self.model(d_in)
- return d_out
- # TODO: 将d_in输入到模型中并返回计算结果
-
-
- # 损失函数:平方误差
- # 调用方法:adversarial_loss(网络输出A, 分类标签B)
- # 计算结果:(A-B)^2
- adversarial_loss = nn.MSELoss()
-
- generator = Generator()
- discriminator = Discriminator()
-
- # 导入MNIST数据集
- from jittor.dataset.mnist import MNIST
- import jittor.transform as transform
-
- transform = transform.Compose([
- transform.Resize(opt.img_size),
- transform.Gray(),
- transform.ImageNormalize(mean=[0.5], std=[0.5]),
- ])
- dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
-
- optimizer_G = nn.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
- optimizer_D = nn.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
-
- from PIL import Image
-
-
- def save_image(img, path, nrow=10, padding=5):
- N, C, W, H = img.shape
- if (N % nrow != 0):
- print("N%nrow!=0")
- return
- ncol = int(N / nrow)
- img_all = []
- for i in range(ncol):
- img_ = []
- for j in range(nrow):
- img_.append(img[i * nrow + j])
- img_.append(np.zeros((C, W, padding)))
- img_all.append(np.concatenate(img_, 2))
- img_all.append(np.zeros((C, padding, img_all[0].shape[2])))
- img = np.concatenate(img_all, 1)
- img = np.concatenate([np.zeros((C, padding, img.shape[2])), img], 1)
- img = np.concatenate([np.zeros((C, img.shape[1], padding)), img], 2)
- min_ = img.min()
- max_ = img.max()
- img = (img - min_) / (max_ - min_) * 255
- img = img.transpose((1, 2, 0))
- if C == 3:
- img = img[:, :, ::-1]
- elif C == 1:
- img = img[:, :, 0]
- Image.fromarray(np.uint8(img)).save(path)
-
-
- def sample_image(n_row, batches_done):
- # 随机采样输入并保存生成的图片
- z = jt.array(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))).float32().stop_grad()
- labels = jt.array(np.array([num for _ in range(n_row) for num in range(n_row)])).float32().stop_grad()
- gen_imgs = generator(z, labels)
- save_image(gen_imgs.numpy(), "%d.png" % batches_done, nrow=n_row)
-
-
- # ----------
- # 模型训练
- # ----------
-
- for epoch in range(opt.n_epochs):
- for i, (imgs, labels) in enumerate(dataloader):
-
- batch_size = imgs.shape[0]
-
- # 数据标签,valid=1表示真实的图片,fake=0表示生成的图片
- valid = jt.ones([batch_size, 1]).float32().stop_grad()
- fake = jt.zeros([batch_size, 1]).float32().stop_grad()
-
- # 真实图片及其类别
- real_imgs = jt.array(imgs)
- labels = jt.array(labels)
-
- # -----------------
- # 训练生成器
- # -----------------
-
- # 采样随机噪声和数字类别作为生成器输入
- z = jt.array(np.random.normal(0, 1, (batch_size, opt.latent_dim))).float32()
- gen_labels = jt.array(np.random.randint(0, opt.n_classes, batch_size)).float32()
-
- # 生成一组图片
- gen_imgs = generator(z, gen_labels)
- # 损失函数衡量生成器欺骗判别器的能力,即希望判别器将生成图片分类为valid
- validity = discriminator(gen_imgs, gen_labels)
- g_loss = adversarial_loss(validity, valid)
- g_loss.sync()
- optimizer_G.step(g_loss)
-
- # ---------------------
- # 训练判别器
- # ---------------------
-
- validity_real = discriminator(real_imgs, labels)
- d_real_loss = adversarial_loss(validity_real, valid)
-
- validity_fake = discriminator(gen_imgs.stop_grad(), gen_labels)
- d_fake_loss = adversarial_loss(validity_fake, fake)
-
- # 总的判别器损失
- d_loss = (d_real_loss + d_fake_loss) / 2
- d_loss.sync()
- optimizer_D.step(d_loss)
- if i % 50 == 0:
- print(
- "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
- % (epoch, opt.n_epochs, i, len(dataloader), d_loss.data, g_loss.data)
- )
-
- batches_done = epoch * len(dataloader) + i
- if batches_done % opt.sample_interval == 0:
- sample_image(n_row=10, batches_done=batches_done)
-
- if epoch % 10 == 0:
- generator.save("generator_last.pkl")
- discriminator.save("discriminator_last.pkl")
-
- generator.eval()
- discriminator.eval()
- generator.load('generator_last.pkl')
- discriminator.load('discriminator_last.pkl')
-
- number = '14129461411720' # TODO: 写入比赛页面中指定的数字序列(字符串类型)
- n_row = len(number)
- z = jt.array(np.random.normal(0, 1, (n_row, opt.latent_dim))).float32().stop_grad()
- labels = jt.array(np.array([int(number[num]) for num in range(n_row)])).float32().stop_grad()
- gen_imgs = generator(z, labels)
-
- img_array = gen_imgs.data.transpose((1, 2, 0, 3))[0].reshape((gen_imgs.shape[2], -1))
- min_ = img_array.min()
- max_ = img_array.max()
- img_array = (img_array - min_) / (max_ - min_) * 255
- Image.fromarray(np.uint8(img_array)).save("result.png")
|