|
- import
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- import math
-
- class PositionalEmbedding(nn.Module):
- def __init__(self, d_model, max_len=5000):
- super(PositionalEmbedding, self).__init__()
- # Compute the positional encodings once in log space.
- pe = torch.zeros(max_len, d_model).float()
- pe.require_grad = False
-
- position = torch.arange(0, max_len).float().unsqueeze(1)
- div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
-
- pe[:, 0::2] = torch.sin(position * div_term)
- pe[:, 1::2] = torch.cos(position * div_term)
-
- pe = pe.unsqueeze(0)
- self.register_buffer('pe', pe)
-
- def forward(self, x):
- return self.pe[:, :x.size(1)]
-
- class TokenEmbedding(nn.Module):
- def __init__(self, c_in, d_model):
- super(TokenEmbedding, self).__init__()
- padding = 1 if torch.__version__>='1.5.0' else 2
- self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
- kernel_size=3, padding=padding, padding_mode='circular')
- for m in self.modules():
- if isinstance(m, nn.Conv1d):
- nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu')
-
- def forward(self, x):
- x = self.tokenConv(x.permute(0, 2, 1)).transpose(1,2)
- return x
-
- class FixedEmbedding(nn.Module):
- def __init__(self, c_in, d_model):
- super(FixedEmbedding, self).__init__()
-
- w = torch.zeros(c_in, d_model).float()
- w.require_grad = False
-
- position = torch.arange(0, c_in).float().unsqueeze(1)
- div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
-
- w[:, 0::2] = torch.sin(position * div_term)
- w[:, 1::2] = torch.cos(position * div_term)
-
- self.emb = nn.Embedding(c_in, d_model)
- self.emb.weight = nn.Parameter(w, requires_grad=False)
-
- def forward(self, x):
- return self.emb(x).detach()
-
- class TemporalEmbedding(nn.Module):
- def __init__(self, d_model, embed_type='fixed', freq='h'):
- super(TemporalEmbedding, self).__init__()
-
- minute_size = 4; hour_size = 24
- weekday_size = 7; day_size = 32; month_size = 13
-
- Embed = FixedEmbedding if embed_type=='fixed' else nn.Embedding
- if freq=='t':
- self.minute_embed = Embed(minute_size, d_model)
- self.hour_embed = Embed(hour_size, d_model)
- self.weekday_embed = Embed(weekday_size, d_model)
- self.day_embed = Embed(day_size, d_model)
- self.month_embed = Embed(month_size, d_model)
-
- def forward(self, x):
- x = x.long()
-
- minute_x = self.minute_embed(x[:,:,4]) if hasattr(self, 'minute_embed') else 0.
- hour_x = self.hour_embed(x[:,:,3])
- weekday_x = self.weekday_embed(x[:,:,2])
- day_x = self.day_embed(x[:,:,1])
- month_x = self.month_embed(x[:,:,0])
-
- return hour_x + weekday_x + day_x + month_x + minute_x
-
- class TimeFeatureEmbedding(nn.Module):
- def __init__(self, d_model, embed_type='timeF', freq='h'):
- super(TimeFeatureEmbedding, self).__init__()
-
- freq_map = {'h':4, 't':5, 's':6, 'm':1, 'a':1, 'w':2, 'd':3, 'b':3}
- d_inp = freq_map[freq]
- self.embed = nn.Linear(d_inp, d_model)
-
- def forward(self, x):
- return self.embed(x)
-
- class DataEmbedding(nn.Module):
- def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
- super(DataEmbedding, self).__init__()
-
- self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
- self.position_embedding = PositionalEmbedding(d_model=d_model)
- self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) if embed_type!='timeF' else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq)
-
- self.dropout = nn.Dropout(p=dropout)
-
- def forward(self, x, x_mark):
- x = self.value_embedding(x) + self.position_embedding(x) + self.temporal_embedding(x_mark)
-
- return self.dropout(x)
|