|
- """
- MindSpore implementation of 'Crossformer'
- Refer to "CROSSFORMER: A VERSATILE VISION TRANSFORMER HINGING ON CROSS-SCALE ATTENTION"
- """
- # pylint: disable=E0401
- import mindspore as ms
- from mindspore import nn
- from mindspore.common.initializer import initializer, TruncatedNormal
- from model.layers import to_2tuple, DropPath
-
-
- class Mlp(nn.Cell):
- """ mlp """
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Dense(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Dense(hidden_features, out_features)
- self.drop = nn.Dropout(p=drop)
-
- def construct(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
-
-
- class DynamicPosBias(nn.Cell):
- """ DynamicPosBias """
- def __init__(self, dim, num_heads, residual):
- super().__init__()
- self.residual = residual
- self.num_heads = num_heads
- self.pos_dim = dim // 4
- self.pos_proj = nn.Dense(2, self.pos_dim)
- self.pos1 = nn.SequentialCell(
- nn.LayerNorm((self.pos_dim,)),
- nn.ReLU(),
- nn.Dense(self.pos_dim, self.pos_dim),
- )
- self.pos2 = nn.SequentialCell(
- nn.LayerNorm((self.pos_dim,)),
- nn.ReLU(),
- nn.Dense(self.pos_dim, self.pos_dim)
- )
- self.pos3 = nn.SequentialCell(
- nn.LayerNorm((self.pos_dim,)),
- nn.ReLU(),
- nn.Dense(self.pos_dim, self.num_heads)
- )
-
- def construct(self, biases):
- if self.residual:
- pos = self.pos_proj(biases) # 2Wh-1 * 2Ww-1, heads
- pos = pos + self.pos1(pos)
- pos = pos + self.pos2(pos)
- pos = self.pos3(pos)
- else:
- pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
- return pos
-
- def flops(self, N):
- """ get flops """
- flops = N * 2 * self.pos_dim
- flops += N * self.pos_dim * self.pos_dim
- flops += N * self.pos_dim * self.pos_dim
- flops += N * self.pos_dim * self.num_heads
- return flops
-
-
- class Attention(nn.Cell):
- r""" Multi-head self attention module with dynamic position bias.
-
- Args:
- dim (int): Number of input channels.
- group_size (tuple[int]): The height and width of the group.
- num_heads (int): Number of attention heads.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
- """
-
- def __init__(self, dim, group_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,
- position_bias=True):
-
- super().__init__()
- self.dim = dim
- self.group_size = group_size # Wh, Ww
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim ** -0.5
- self.position_bias = position_bias
-
- if position_bias:
- self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
-
- # generate mother-set
- position_bias_h = ms.ops.arange(1 - self.group_size[0], self.group_size[0])
- position_bias_w = ms.ops.arange(1 - self.group_size[1], self.group_size[1])
- biases = ms.ops.stack(ms.ops.meshgrid(position_bias_h, position_bias_w)) # 2, 2Wh-1, 2W2-1
- biases = biases.flatten(start_dim=1).transpose(1, 0).float()
- self.biases = ms.Parameter(biases, name='biases', requires_grad=False)
-
- # get pair-wise relative position index for each token inside the group
- coords_h = ms.ops.arange(self.group_size[0])
- coords_w = ms.ops.arange(self.group_size[1])
- coords = ms.ops.stack(ms.ops.meshgrid(coords_h, coords_w)) # 2, Wh, Ww
- coords_flatten = ms.ops.flatten(coords, start_dim=1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0) # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += self.group_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.group_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.group_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- self.relative_position_index = ms.Parameter(relative_position_index, name='relative_position_index',
- requires_grad=False)
-
- self.qkv = nn.Dense(dim, dim * 3, has_bias=qkv_bias)
- self.attn_drop = nn.Dropout(p=attn_drop)
- self.proj = nn.Dense(dim, dim)
- self.proj_drop = nn.Dropout(p=proj_drop)
-
- self.softmax = nn.Softmax(axis=-1)
-
- def construct(self, x, mask=None):
- """
- Args:
- x: input features with shape of (num_groups*B, N, C)
- mask: (0/-inf) mask with shape of (num_groups, Wh*Ww, Wh*Ww) or None
- """
- B_, N, C = x.shape
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
-
- q = q * self.scale
- attn = q @ k.transpose(0, 1, 3, 2)
-
- if self.position_bias:
- pos = self.pos(self.biases) # 2Wh-1 * 2Ww-1, heads
- # select position bias
- relative_position_bias = pos[self.relative_position_index.view(-1)].view(
- self.group_size[0] * self.group_size[1], self.group_size[0] * self.group_size[1], -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1) # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
-
- if mask is not None:
- nW = mask.shape[0]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
-
- attn = self.attn_drop(attn)
-
- x = (attn @ v).transpose(0, 2, 1, 3).reshape(B_, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
-
- def flops(self, N):
- """ get flops """
- flops = 0
- # qkv = self.qkv(x)
- flops += N * self.dim * 3 * self.dim
- # attn = (q @ k.transpose(-2, -1))
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
- # x = (attn @ v)
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
- # x = self.proj(x)
- flops += N * self.dim * self.dim
- if self.position_bias:
- flops += self.pos.flops(N)
- return flops
-
-
- class CrossFormerBlock(nn.Cell):
- r""" CrossFormer Block.
-
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resulotion.
- num_heads (int): Number of attention heads.
- group_size (int): Group size.
- lsda_flag (int): use SDA or LDA, 0 for SDA and 1 for LDA.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
-
- def __init__(self, dim, input_resolution, num_heads, group_size=7, lsda_flag=0,
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
- act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_patch_size=1):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.num_heads = num_heads
- self.group_size = group_size
- self.lsda_flag = lsda_flag
- self.mlp_ratio = mlp_ratio
- self.num_patch_size = num_patch_size
- if min(self.input_resolution) <= self.group_size:
- # if group size is larger than input resolution, we don't partition groups
- self.lsda_flag = 0
- self.group_size = min(self.input_resolution)
-
- self.norm1 = norm_layer((dim, ))
-
- self.attn = Attention(
- dim, group_size=to_2tuple(self.group_size), num_heads=num_heads,
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
- position_bias=True)
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer((dim, ))
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
-
- self.attn_mask = None
- # self.attn_mask = ms.Parameter(attn_mask, name='attn_mask', requires_grad=False)
-
- def construct(self, x):
- H, W = self.input_resolution
- B, L, C = x.shape
- assert L == H * W, f"input feature has wrong size {L}, {H}, {W}"
-
- shortcut = x
- x = self.norm1(x)
- x = x.view(B, H, W, C)
-
- # group embeddings
- G = self.group_size
- if self.lsda_flag == 0: # 0 for SDA
- x = x.reshape(B, H // G, G, W // G, G, C).permute(0, 1, 3, 2, 4, 5)
- else: # 1 for LDA
- x = x.reshape(B, G, H // G, G, W // G, C).permute(0, 2, 4, 1, 3, 5)
- x = x.reshape(B * H * W // G ** 2, G ** 2, C)
-
- # multi-head self-attention
- x = self.attn(x, mask=self.attn_mask) # nW*B, G*G, C
-
- # ungroup embeddings
- x = x.reshape(B, H // G, W // G, G, G, C)
- if self.lsda_flag == 0:
- x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, H, W, C)
- else:
- x = x.permute(0, 3, 1, 4, 2, 5).reshape(B, H, W, C)
- x = x.view(B, H * W, C)
-
- # FFN
- x = shortcut + self.drop_path(x)
- x = x + self.drop_path(self.mlp(self.norm2(x)))
-
- return x
-
- def flops(self):
- """ get flops """
- flops = 0
- H, W = self.input_resolution
- # norm1
- flops += self.dim * H * W
- # LSDA
- nW = H * W / self.group_size / self.group_size
- flops += nW * self.attn.flops(self.group_size * self.group_size)
- # mlp
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
- # norm2
- flops += self.dim * H * W
- return flops
-
-
- class PatchMerging(nn.Cell):
- r""" Patch Merging Layer.
-
- Args:
- input_resolution (tuple[int]): Resolution of input feature.
- dim (int): Number of input channels.
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
-
- def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm, patch_size=None):
- super().__init__()
- if patch_size is None:
- patch_size = [2]
- self.input_resolution = input_resolution
- self.dim = dim
- self.reductions = nn.SequentialCell()
- self.patch_size = patch_size
- self.norm = norm_layer((dim, ))
-
- for i, ps in enumerate(patch_size):
- if i == len(patch_size) - 1:
- out_dim = 2 * dim // 2 ** i
- else:
- out_dim = 2 * dim // 2 ** (i + 1)
- stride = 2
- padding = (ps - stride) // 2
- self.reductions.append(nn.Conv2d(dim, out_dim, kernel_size=ps,
- stride=stride, pad_mode='pad', padding=padding))
-
- def construct(self, x):
- """
- x: B, H*W, C
- """
- H, W = self.input_resolution
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
- assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
-
- x = self.norm(x)
- x = x.view(B, H, W, C).permute(0, 3, 1, 2)
-
- xs = []
- for i, _ in enumerate(self.reductions):
- tmp_x = self.reductions[i](x).flatten(start_dim=2).transpose(0, 2, 1)
- xs.append(tmp_x)
- x = ms.ops.cat(xs, axis=2)
- return x
-
- def flops(self):
- """ get flops """
- H, W = self.input_resolution
- flops = H * W * self.dim
- for i, ps in enumerate(self.patch_size):
- if i == len(self.patch_size) - 1:
- out_dim = 2 * self.dim // 2 ** i
- else:
- out_dim = 2 * self.dim // 2 ** (i + 1)
- flops += (H // 2) * (W // 2) * ps * ps * out_dim * self.dim
- return flops
-
-
- class Stage(nn.Cell):
- """ CrossFormer blocks for one stage.
-
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resolution.
- depth (int): Number of blocks.
- num_heads (int): Number of attention heads.
- group_size (int): variable G in the paper, one group has GxG embeddings
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
- """
-
- def __init__(self, dim, input_resolution, depth, num_heads, group_size,
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, patch_size_end=None, num_patch_size=None):
-
- super().__init__()
- if patch_size_end is None:
- patch_size_end = [4]
- self.dim = dim
- self.input_resolution = input_resolution
- self.depth = depth
-
- # build blocks
- self.blocks = nn.SequentialCell()
- for i in range(depth):
- lsda_flag = 0 if (i % 2 == 0) else 1
- self.blocks.append(CrossFormerBlock(dim=dim, input_resolution=input_resolution,
- num_heads=num_heads, group_size=group_size,
- lsda_flag=lsda_flag,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias, qk_scale=qk_scale,
- drop=drop, attn_drop=attn_drop,
- drop_path=float(drop_path[i])
- if isinstance(drop_path, list) else drop_path,
- norm_layer=norm_layer,
- num_patch_size=num_patch_size))
-
- # patch merging layer
- if downsample is not None:
- self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer,
- patch_size=patch_size_end, num_input_patch_size=num_patch_size)
- else:
- self.downsample = None
-
- def construct(self, x):
- for blk in self.blocks:
- x = blk(x)
- if self.downsample is not None:
- x = self.downsample(x)
- return x
-
- def flops(self):
- """ get flops """
- flops = 0
- for blk in self.blocks:
- flops += blk.flops()
- if self.downsample is not None:
- flops += self.downsample.flops()
- return flops
-
-
- class PatchEmbed(nn.Cell):
- r""" Image to Patch Embedding
-
- Args:
- img_size (int): Image size. Default: 224.
- patch_size (int): Patch token size. Default: [4].
- in_chans (int): Number of input image channels. Default: 3.
- embed_dim (int): Number of linear projection output channels. Default: 96.
- norm_layer (nn.Module, optional): Normalization layer. Default: None
- """
-
- def __init__(self, img_size=224, patch_size=None, in_chans=3, embed_dim=96, norm_layer=None):
- super().__init__()
- if patch_size is None:
- patch_size = [4]
- img_size = to_2tuple(img_size)
- # patch_size = to_2tuple(patch_size)
- patches_resolution = [img_size[0] // patch_size[0], img_size[0] // patch_size[0]]
- self.img_size = img_size
- self.patch_size = patch_size
- self.patches_resolution = patches_resolution
- self.num_patches = patches_resolution[0] * patches_resolution[1]
-
- self.in_chans = in_chans
- self.embed_dim = embed_dim
-
- self.projs = nn.SequentialCell()
- for i, ps in enumerate(patch_size):
- if i == len(patch_size) - 1:
- dim = embed_dim // 2 ** i
- else:
- dim = embed_dim // 2 ** (i + 1)
- stride = patch_size[0]
- padding = (ps - patch_size[0]) // 2
- self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, pad_mode='pad', padding=padding))
- if norm_layer is not None:
- self.norm = norm_layer((embed_dim, ))
- else:
- self.norm = None
-
- def construct(self, x):
- _, _, H, W = x.shape
- assert H == self.img_size[0] and W == self.img_size[1], \
- f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
- xs = []
- for i, _ in enumerate(self.projs):
- tx = self.projs[i](x).flatten(start_dim=2).transpose(0, 2, 1)
- xs.append(tx) # B Ph*Pw C
- x = ms.ops.cat(xs, axis=2)
- if self.norm is not None:
- x = self.norm(x)
- return x
-
- def flops(self):
- """ get flops """
- Ho, Wo = self.patches_resolution
- flops = 0
- for i, _ in enumerate(self.patch_size):
- if i == len(self.patch_size) - 1:
- dim = self.embed_dim // 2 ** i
- else:
- dim = self.embed_dim // 2 ** (i + 1)
- flops += Ho * Wo * dim * self.in_chans * (self.patch_size[i] * self.patch_size[i])
- if self.norm is not None:
- flops += Ho * Wo * self.embed_dim
- return flops
-
-
- class CrossFormer(nn.Cell):
- r""" CrossFormer
- A PyTorch impl of : `CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention` -
-
- Args:
- img_size (int | tuple(int)): Input image size. Default 224
- patch_size (int | tuple(int)): Patch size. Default: 4
- in_chans (int): Number of input image channels. Default: 3
- num_classes (int): Number of classes for classification head. Default: 1000
- embed_dim (int): Patch embedding dimension. Default: 96
- depths (tuple(int)): Depth of each stage.
- num_heads (tuple(int)): Number of attention heads in different layers.
- group_size (int): Group size. Default: 7
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
- drop_rate (float): Dropout rate. Default: 0
- attn_drop_rate (float): Attention dropout rate. Default: 0
- drop_path_rate (float): Stochastic depth rate. Default: 0.1
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
- """
-
- def __init__(self, img_size=224, patch_size=None, in_chans=3, num_classes=1000,
- embed_dim=96, depths=None, num_heads=None,
- group_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
- norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
- merge_size=None):
- super().__init__()
-
- if merge_size is None:
- merge_size = [[2], [2], [2]]
- if num_heads is None:
- num_heads = [3, 6, 12, 24]
- if depths is None:
- depths = [2, 2, 6, 2]
- if patch_size is None:
- patch_size = [4]
- self.num_classes = num_classes
- self.num_layers = len(depths)
- self.embed_dim = embed_dim
- self.ape = ape
- self.patch_norm = patch_norm
- self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
- self.mlp_ratio = mlp_ratio
-
- # split image into non-overlapping patches
- self.patch_embed = PatchEmbed(
- img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
- norm_layer=norm_layer if self.patch_norm else None)
- num_patches = self.patch_embed.num_patches
- patches_resolution = self.patch_embed.patches_resolution
- self.patches_resolution = patches_resolution
-
- # absolute position embedding
- if self.ape:
- self.absolute_pos_embed = ms.Parameter(ms.ops.zeros((1, num_patches, embed_dim)))
- self.absolute_pos_embed.set_data(initializer(TruncatedNormal(sigma=.02), self.absolute_pos_embed.shape,
- self.absolute_pos_embed.dtype))
-
- self.pos_drop = nn.Dropout(p=drop_rate)
-
- # stochastic depth
- dpr = list(ms.ops.linspace(0, drop_path_rate, sum(depths)))
-
- # build layers
- self.layers = nn.SequentialCell()
-
- num_patch_sizes = [len(patch_size)] + [len(m) for m in merge_size]
- for i_layer in range(self.num_layers):
- patch_size_end = merge_size[i_layer] if i_layer < self.num_layers - 1 else None
- num_patch_size = num_patch_sizes[i_layer]
- layer = Stage(dim=int(embed_dim * 2 ** i_layer),
- input_resolution=(patches_resolution[0] // (2 ** i_layer),
- patches_resolution[1] // (2 ** i_layer)),
- depth=depths[i_layer],
- num_heads=num_heads[i_layer],
- group_size=group_size[i_layer],
- mlp_ratio=self.mlp_ratio,
- qkv_bias=qkv_bias, qk_scale=qk_scale,
- drop=drop_rate, attn_drop=attn_drop_rate,
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- norm_layer=norm_layer,
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
- patch_size_end=patch_size_end,
- num_patch_size=num_patch_size)
- self.layers.append(layer)
-
- self.norm = norm_layer((self.num_features, ))
- self.avgpool = nn.AdaptiveAvgPool1d(1)
- self.head = nn.Dense(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
-
- self.apply(self._init_weights)
-
- def _init_weights(self, cell):
- if isinstance(cell, nn.Dense):
- cell.weight.set_data(initializer(TruncatedNormal(sigma=.02), cell.weight.shape, cell.weight.dtype))
- if cell.bias is not None:
- cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
- elif isinstance(cell, nn.LayerNorm):
- cell.gamma.set_data(initializer('ones', cell.gamma.shape, cell.gamma.dtype))
- cell.beta.set_data(initializer('zeros', cell.beta.shape, cell.beta.dtype))
-
- def construct_features(self, x):
- """ get features """
- x = self.patch_embed(x)
- if self.ape:
- x = x + self.absolute_pos_embed
- x = self.pos_drop(x)
-
- for layer in self.layers:
- x = layer(x)
-
- x = self.norm(x) # B L C
- x = self.avgpool(x.transpose(0, 2, 1)) # B C 1
- x = ms.ops.flatten(x, start_dim=1)
- return x
-
- def construct(self, x):
- x = self.construct_features(x)
- x = self.head(x)
- return x
-
- def flops(self):
- """ get flops """
- flops = 0
- flops += self.patch_embed.flops()
- for _, layer in enumerate(self.layers):
- flops += layer.flops()
- flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
- flops += self.num_features * self.num_classes
- return flops
-
-
- if __name__ == '__main__':
- dummy_input = ms.ops.randn((1, 3, 224, 224))
- model = CrossFormer(img_size=224,
- patch_size=[4, 8, 16, 32],
- in_chans=3,
- num_classes=1000,
- embed_dim=48,
- depths=[2, 2, 6, 2],
- num_heads=[3, 6, 12, 24],
- group_size=[7, 7, 7, 7],
- mlp_ratio=4.,
- qkv_bias=True,
- qk_scale=None,
- drop_rate=0.0,
- drop_path_rate=0.1,
- ape=False,
- patch_norm=True,
- merge_size=[[2, 4], [2, 4], [2, 4]]
- )
- output = model(dummy_input)
- print(output.shape)
|