import mindspore.nn as nn import mindspore.ops.operations as ops import mindspore.common.dtype as mstype import mindspore.common.initializer as init import mindspore.tensor as Tensor import math class PositionalEmbedding(nn.Cell): def __init__(self, d_model, max_len=5000): super(PositionalEmbedding, self).__init__() pe = Tensor(torch.zeros(max_len, d_model).float(), mstype.float32) position = Tensor(torch.arange(0, max_len).float().unsqueeze(1), mstype.float32) div_term = Tensor((torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp(), mstype.float32) pe[:, 0::2] = ops.sin(position * div_term) pe[:, 1::2] = ops.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = nn.Parameter(pe, requires_grad=False) def construct(self, x): return self.pe[:, :x.shape[1]] class TokenEmbedding(nn.Cell): def __init__(self, c_in, d_model): super(TokenEmbedding, self).__init__() padding = 1 if torch.__version__ >= '1.5.0' else 2 self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, kernel_size=3, padding=padding, padding_mode='circular') for _, m in self.cells_and_names(): if isinstance(m, nn.Conv1d): m.weight.set_data(init.initializer(init.KaimingNormal(), m.weight.shape, m.weight.dtype)) m.bias.set_data(init.initializer(init.Zero(), m.bias.shape, m.bias.dtype)) def construct(self, x): x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) return x class FixedEmbedding(nn.Cell): def __init__(self, c_in, d_model): super(FixedEmbedding, self).__init__() w = Tensor(torch.zeros(c_in, d_model).float(), mstype.float32) position = Tensor(torch.arange(0, c_in).float().unsqueeze(1), mstype.float32) div_term = Tensor((torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp(), mstype.float32) w[:, 0::2] = ops.sin(position * div_term) w[:, 1::2] = ops.cos(position * div_term) self.emb = nn.Embedding(c_in, d_model, embedding_table=w, embedding_size=(c_in, d_model)) self.emb.embedding_table.requires_grad = False def construct(self, x): return self.emb(x).detach() class TemporalEmbedding(nn.Cell): def __init__(self, d_model, embed_type='fixed', freq='h'): super(TemporalEmbedding, self).__init__() minute_size = 4 hour_size = 24 weekday_size = 7 day_size = 32 month_size = 13 Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding if freq == 't': self.minute_embed = Embed(minute_size, d_model) self.hour_embed = Embed(hour_size, d_model) self.weekday_embed = Embed(weekday_size, d_model) self.day_embed = Embed(day_size, d_model) self.month_embed = Embed(month_size, d_model) def construct(self, x): x = x.astype(mstype.int32) minute_x = self.minute_embed(x[:, :, 4]) if hasattr(self, 'minute_embed') else 0. hour_x = self.hour_embed(x[:, :, 3]) weekday_x = self.weekday_embed(x[:, :, 2]) day_x = self.day_embed(x[:, :, 1]) month_x = self.month_embed(x[:, :, 0]) return hour_x + weekday_x + day_x + month_x + minute_x class TimeFeatureEmbedding(nn.Cell): def __init__(self, d_model, embed_type='timeF', freq='h'): super(TimeFeatureEmbedding, self).__init__() freq_map = {'h': 4, 't': 5, 's': 6, 'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3} d_inp = freq_map[freq] self.embed = nn.Dense(d_inp,d_model) def construct(self, x): return self.embed(x) class DataEmbedding(nn.Cell): def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1): super(DataEmbedding, self).__init__() self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) self.position_embedding = PositionalEmbedding(d_model=d_model) self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) self.dropout = nn.Dropout(p=dropout) def construct(self, x, x_mark): x = self.value_embedding(x) + self.position_embedding(x) + self.temporal_embedding(x_mark) return self.dropout(x)