import numpy as np import mindspore.numpy as mnp import mindspore from mindspore import Tensor, Parameter def adjust_learning_rate(optimizer, epoch, args): if args.lradj == 'type1': lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch-1) // 1))} elif args.lradj == 'type2': lr_adjust = { 2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, 10: 5e-7, 15: 1e-7, 20: 5e-8 } if epoch in lr_adjust.keys(): lr = lr_adjust[epoch] for param_group in optimizer.parameters(): param_group.set_lr(lr) print('Updating learning rate to {}'.format(lr)) class EarlyStopping: def __init__(self, patience=7, verbose=False, delta=0): self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta def __call__(self, val_loss, model, path): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model, path) elif score < self.best_score + self.delta: self.counter += 1 print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model, path) self.counter = 0 def save_checkpoint(self, val_loss, model, path): if self.verbose: print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') model.save_checkpoint(path + '/' + 'checkpoint.ckpt') self.val_loss_min = val_loss class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class StandardScaler(): def __init__(self): self.mean = 0. self.std = 1. def fit(self, data): self.mean = mnp.mean(data, 0) self.std = mnp.std(data, 0) def transform(self, data): mean = Tensor(self.mean, mindspore.float32) std = Tensor(self.std, mindspore.float32) return (data - mean) / std def inverse_transform(self, data): mean = Tensor(self.mean, mindspore.float32) std = Tensor(self.std, mindspore.float32) if data.shape[-1] != mean.shape[-1]: mean = mean[-1:] std = std[-1:] return (data * std) + mean