Browse Source

ADD file via upload

main
bin_open_source 2 years ago
parent
commit
f55b2866e8
1 changed files with 252 additions and 0 deletions
  1. +252
    -0
      main_informer_local.py

+ 252
- 0
main_informer_local.py View File

@@ -0,0 +1,252 @@
import argparse
import os
import torch
from exp.exp_informer import Exp_Informer
parser = argparse.ArgumentParser(description='[Informer] Long Sequences Forecasting')
parser.add_argument('--model', type=str, required=False, default='informer',help='model of experiment, options: [informer, informerstack, informerlight(TBD)]')
parser.add_argument('--data', type=str, required=False, default='SH000001.csv', help='data')
# parser.add_argument('--data', type=str, required=True, default='ETTh1', help='data')
parser.add_argument('--root_path', type=str, default='./data/stock/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='SH000001.csv', help='data file')
# parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
# parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of Informer encoder')
parser.add_argument('--label_len', type=int, default=48, help='start token length of Informer decoder')
parser.add_argument('--pred_len', type=int, default=24, help='prediction sequence length')
# Informer decoder input: concat[start token series(label_len), zero padding series(pred_len)]
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--s_layers', type=str, default='3,2,1', help='num of stack encoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--factor', type=int, default=5, help='probsparse attn factor')
parser.add_argument('--padding', type=int, default=0, help='padding type')
parser.add_argument('--distil', action='store_false', help='whether to use distilling in encoder, using this argument means not using distilling', default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--attn', type=str, default='prob', help='attention used in encoder, options:[prob, full]')
parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu',help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
parser.add_argument('--mix', action='store_false', help='use mix attention in generative decoder', default=True)
parser.add_argument('--cols', type=str, nargs='+', help='certain cols from the data files as the input features')
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=6, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test',help='exp description')
parser.add_argument('--loss', type=str, default='mse',help='loss function')
parser.add_argument('--lradj', type=str, default='type1',help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3',help='device ids of multile gpus')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
def denormalize(normalized_num, min_val, max_val):
"""
还原函数,将归一化后的数值还原为原始数值
"""
return normalized_num * (max_val - min_val) + min_val
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ','')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
args.model = 'informer' # model of experiment, options: [informer, informerstack, informerlight(TBD)]
args.data = 'custom' # data
args.root_path = './data/stock/' # root path of data file
args.data_path = 'SH600000.csv' # data file
# args.data_path = 'SH000001.csv' # data file
args.features = 'MS' # forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate
args.target = 'Close' # target feature in S or MS task
args.freq = 'd' # freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h
args.checkpoints = './checkpoints' # location of model checkpoints
args.seq_len = 20 # input sequence length of Informer encoder
args.label_len = 10 # start token length of Informer decoder
args.pred_len = 5 # prediction sequence length
# Informer decoder input: concat[start token series(label_len), zero padding series(pred_len)]
args.enc_in = 5 # encoder input size
args.dec_in = 5 # decoder input size
args.c_out = 1 # output size
args.factor = 5 # probsparse attn factor
args.padding = 0 # padding type
args.d_model = 256 # dimension of model
args.n_heads = 4 # num of heads
args.e_layers = 2 # num of encoder layers
args.d_layers = 1 # num of decoder layers
args.d_ff = 256 # dimension of fcn in model
args.dropout = 0.05 # dropout
args.attn = 'prob' # attention used in encoder, options:[prob, full]
args.embed = 'timeF' # time features encoding, options:[timeF, fixed, learned]
args.activation = 'gelu' # activation
args.distil = True # whether to use distilling in encoder
args.output_attention = False # whether to output attention in ecoder
args.batch_size = 32
args.learning_rate = 0.0001
args.loss = 'mse'
args.lradj = 'type1'
args.use_amp = False # whether to use automatic mixed precision training
args.num_workers = 0
args.train_epochs = 20
args.patience = 3
args.des = 'exp'
# args.use_gpu = True if torch.cuda.is_available() else False
args.use_gpu = False
args.gpu = 0
args.use_multi_gpu = False
args.devices = '0,1,2,3'
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ','')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
args.detail_freq = args.freq
args.freq = args.freq[-1:]
#%%
print('Args in experiment:')
print(args)
Exp = Exp_Informer
#
# for ii in range(args.itr):
# # setting record of experiments
# setting = ('{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_at{}_fc{}_eb{}_dt{}_mx{}_{}_{}'.
# format(args.model, args.data, args.features,
# args.seq_len, args.label_len, args.pred_len,
# args.d_model, args.n_heads, args.e_layers, args.d_layers, args.d_ff, args.attn, args.factor,
# args.embed, args.distil, args.mix, args.des, ii))
#
# exp = Exp(args) # set experiments
# print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
# exp.train(setting)
#
# print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
# exp.test(setting)
#
# if args.do_predict:
# print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
# exp.predict(setting, True)
#
# torch.cuda.empty_cache()
#
#
# # the prediction will be saved in ./results1/{setting}/real_prediction.npy
import pandas as pd
# 读取CSV文件
csv_file = './data/stock/SH000001.csv'
# csv_file = './data/stock/SH600000.csv'
data = pd.read_csv(csv_file)
# 找到最大值和最小值
max_value = data['High'].max()
min_value = data['Low'].min()
last_dat = data['date'].iloc[-1]
from datetime import datetime, timedelta
date_obj = datetime.strptime(last_dat, '%Y/%m/%d')
# 创建一个空列表来存储后五天的日期
next_dates = []
# 计算后五天的日期并将其添加到列表中
for i in range(5):
next_date = date_obj + timedelta(days=i + 1)
next_dates.append(next_date.strftime('%Y/%m/%d'))
# print("最大值:", max_value)
# print("最小值:", min_value)
def denormalize(normalized_num, min_val, max_val):
"""
还原函数,将归一化后的数值还原为原始数值
"""
return normalized_num * (max_val - min_val) + min_val
import numpy as np
import matplotlib.pyplot as plt
setting = 'informer_custom_ftMS_sl20_ll10_pl5_dm256_nh4_el2_dl1_df256_atprob_fc5_ebtimeF_dtTrue_exp'
# setting = 'informer_custom_ftMS_sl20_ll10_pl5_dm256_nh4_el2_dl1_df256_atprob_fc5_ebtimeF_dtTrue_mxTrue_exp_0'
prediction = np.load('./results1/' + setting + '/real_prediction.npy')
print(prediction.shape)
# plt.figure()
prediction[0, :, -1]= denormalize(prediction[0, :, -1], min_value, max_value)
x = [1, 2, 3, 4, 5]
plt.plot(next_dates,prediction[0, :, -1])
plt.xlabel("day")
plt.ylabel("price")
plt.title("Price trend in the next 5 days")
# # 创建示例数据
# # 设置x轴和y轴的刻度起始值为1
# plt.xticks(range(1, max(x) + 1))
plt.show()
# preds = np.load('./results1/'+setting+'/pred.npy')
# trues = np.load('./results1/'+setting+'/true.npy')
# [samples, pred_len, dimensions]
# plt.figure()
# plt.plot(trues[10,:,-1], label='GroundTruth')
# plt.plot(preds[10,:,-1], label='Prediction')
# plt.legend()
# plt.show()
#
#
# plt.figure()
# plt.plot(trues[20,:,-1], label='GroundTruth')
# plt.plot(preds[20,:,-1], label='Prediction')
# plt.legend()
# plt.show()
#
#
# plt.figure()
# plt.plot(trues[30,:,-1], label='GroundTruth')
# plt.plot(preds[30,:,-1], label='Prediction')
# plt.legend()
# plt.show()
# plt.figure()
# plt.plot(trues[:,0,-1].reshape(-1), label='GroundTruth')
# plt.plot(preds[:,0,-1].reshape(-1), label='Prediction')
# plt.legend()
# plt.show()

Loading…
Cancel
Save