| @@ -1,110 +1,107 @@ | |||
| import | |||
| import torch | |||
| import torch.nn as nn | |||
| import torch.nn.functional as F | |||
| import mindspore.nn as nn | |||
| import mindspore.ops.operations as ops | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.common.initializer as init | |||
| import mindspore.tensor as Tensor | |||
| import math | |||
| class PositionalEmbedding(nn.Module): | |||
| class PositionalEmbedding(nn.Cell): | |||
| def __init__(self, d_model, max_len=5000): | |||
| super(PositionalEmbedding, self).__init__() | |||
| # Compute the positional encodings once in log space. | |||
| pe = torch.zeros(max_len, d_model).float() | |||
| pe.require_grad = False | |||
| position = torch.arange(0, max_len).float().unsqueeze(1) | |||
| div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp() | |||
| pe = Tensor(torch.zeros(max_len, d_model).float(), mstype.float32) | |||
| position = Tensor(torch.arange(0, max_len).float().unsqueeze(1), mstype.float32) | |||
| div_term = Tensor((torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp(), mstype.float32) | |||
| pe[:, 0::2] = torch.sin(position * div_term) | |||
| pe[:, 1::2] = torch.cos(position * div_term) | |||
| pe[:, 0::2] = ops.sin(position * div_term) | |||
| pe[:, 1::2] = ops.cos(position * div_term) | |||
| pe = pe.unsqueeze(0) | |||
| self.register_buffer('pe', pe) | |||
| self.pe = nn.Parameter(pe, requires_grad=False) | |||
| def forward(self, x): | |||
| return self.pe[:, :x.size(1)] | |||
| def construct(self, x): | |||
| return self.pe[:, :x.shape[1]] | |||
| class TokenEmbedding(nn.Module): | |||
| class TokenEmbedding(nn.Cell): | |||
| def __init__(self, c_in, d_model): | |||
| super(TokenEmbedding, self).__init__() | |||
| padding = 1 if torch.__version__>='1.5.0' else 2 | |||
| self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, | |||
| kernel_size=3, padding=padding, padding_mode='circular') | |||
| for m in self.modules(): | |||
| padding = 1 if torch.__version__ >= '1.5.0' else 2 | |||
| self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, kernel_size=3, padding=padding, padding_mode='circular') | |||
| for _, m in self.cells_and_names(): | |||
| if isinstance(m, nn.Conv1d): | |||
| nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu') | |||
| m.weight.set_data(init.initializer(init.KaimingNormal(), m.weight.shape, m.weight.dtype)) | |||
| m.bias.set_data(init.initializer(init.Zero(), m.bias.shape, m.bias.dtype)) | |||
| def forward(self, x): | |||
| x = self.tokenConv(x.permute(0, 2, 1)).transpose(1,2) | |||
| def construct(self, x): | |||
| x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) | |||
| return x | |||
| class FixedEmbedding(nn.Module): | |||
| class FixedEmbedding(nn.Cell): | |||
| def __init__(self, c_in, d_model): | |||
| super(FixedEmbedding, self).__init__() | |||
| w = Tensor(torch.zeros(c_in, d_model).float(), mstype.float32) | |||
| position = Tensor(torch.arange(0, c_in).float().unsqueeze(1), mstype.float32) | |||
| div_term = Tensor((torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp(), mstype.float32) | |||
| w = torch.zeros(c_in, d_model).float() | |||
| w.require_grad = False | |||
| position = torch.arange(0, c_in).float().unsqueeze(1) | |||
| div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp() | |||
| w[:, 0::2] = ops.sin(position * div_term) | |||
| w[:, 1::2] = ops.cos(position * div_term) | |||
| w[:, 0::2] = torch.sin(position * div_term) | |||
| w[:, 1::2] = torch.cos(position * div_term) | |||
| self.emb = nn.Embedding(c_in, d_model, embedding_table=w, embedding_size=(c_in, d_model)) | |||
| self.emb.embedding_table.requires_grad = False | |||
| self.emb = nn.Embedding(c_in, d_model) | |||
| self.emb.weight = nn.Parameter(w, requires_grad=False) | |||
| def forward(self, x): | |||
| def construct(self, x): | |||
| return self.emb(x).detach() | |||
| class TemporalEmbedding(nn.Module): | |||
| class TemporalEmbedding(nn.Cell): | |||
| def __init__(self, d_model, embed_type='fixed', freq='h'): | |||
| super(TemporalEmbedding, self).__init__() | |||
| minute_size = 4; hour_size = 24 | |||
| weekday_size = 7; day_size = 32; month_size = 13 | |||
| minute_size = 4 | |||
| hour_size = 24 | |||
| weekday_size = 7 | |||
| day_size = 32 | |||
| month_size = 13 | |||
| Embed = FixedEmbedding if embed_type=='fixed' else nn.Embedding | |||
| if freq=='t': | |||
| Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding | |||
| if freq == 't': | |||
| self.minute_embed = Embed(minute_size, d_model) | |||
| self.hour_embed = Embed(hour_size, d_model) | |||
| self.weekday_embed = Embed(weekday_size, d_model) | |||
| self.day_embed = Embed(day_size, d_model) | |||
| self.month_embed = Embed(month_size, d_model) | |||
| def forward(self, x): | |||
| x = x.long() | |||
| minute_x = self.minute_embed(x[:,:,4]) if hasattr(self, 'minute_embed') else 0. | |||
| hour_x = self.hour_embed(x[:,:,3]) | |||
| weekday_x = self.weekday_embed(x[:,:,2]) | |||
| day_x = self.day_embed(x[:,:,1]) | |||
| month_x = self.month_embed(x[:,:,0]) | |||
| def construct(self, x): | |||
| x = x.astype(mstype.int32) | |||
| minute_x = self.minute_embed(x[:, :, 4]) if hasattr(self, 'minute_embed') else 0. | |||
| hour_x = self.hour_embed(x[:, :, 3]) | |||
| weekday_x = self.weekday_embed(x[:, :, 2]) | |||
| day_x = self.day_embed(x[:, :, 1]) | |||
| month_x = self.month_embed(x[:, :, 0]) | |||
| return hour_x + weekday_x + day_x + month_x + minute_x | |||
| class TimeFeatureEmbedding(nn.Module): | |||
| class TimeFeatureEmbedding(nn.Cell): | |||
| def __init__(self, d_model, embed_type='timeF', freq='h'): | |||
| super(TimeFeatureEmbedding, self).__init__() | |||
| freq_map = {'h':4, 't':5, 's':6, 'm':1, 'a':1, 'w':2, 'd':3, 'b':3} | |||
| freq_map = {'h': 4, 't': 5, 's': 6, 'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3} | |||
| d_inp = freq_map[freq] | |||
| self.embed = nn.Linear(d_inp, d_model) | |||
| def forward(self, x): | |||
| self.embed = nn.Dense(d_inp,d_model) | |||
| def construct(self, x): | |||
| return self.embed(x) | |||
| class DataEmbedding(nn.Module): | |||
| class DataEmbedding(nn.Cell): | |||
| def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1): | |||
| super(DataEmbedding, self).__init__() | |||
| self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) | |||
| self.position_embedding = PositionalEmbedding(d_model=d_model) | |||
| self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) if embed_type!='timeF' else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) | |||
| self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) | |||
| self.dropout = nn.Dropout(p=dropout) | |||
| def forward(self, x, x_mark): | |||
| def construct(self, x, x_mark): | |||
| x = self.value_embedding(x) + self.position_embedding(x) + self.temporal_embedding(x_mark) | |||
| return self.dropout(x) | |||