Browse Source

Delete 'model/backbone/convnextv2.py'

v1
limingjuan 2 years ago
parent
commit
2d6774dd33
1 changed files with 0 additions and 181 deletions
  1. +0
    -181
      model/backbone/convnextv2.py

+ 0
- 181
model/backbone/convnextv2.py View File

@@ -1,181 +0,0 @@
# pylint: disable=E0401
"""
MindSpore implementation of `ConvNextV2`.
Refer to ConvNeXtV2: Co-designing and Scaling ConvNets with Masked Autoencoders
"""
import mindspore as ms
from mindspore import nn
from model.layers import DropPath


class Block(nn.Cell):
""" Block """
def __init__(self, dim, drop_path=0.):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, pad_mode='pad', padding=3, group=dim)
self.norm = LayerNorm(dim, eps=1e-6, data_format="channels_last")
self.pwconv1 = nn.Dense(dim, 4 * dim)
self.act = nn.GELU()
self.grn = GRN(4 * dim)
self.pwconv2 = nn.Dense(4 * dim, dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

def construct(self, x):
y = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)

x = self.pwconv2(x)

x = x.permute(0, 3, 1, 2)
x = y + self.drop_path(x)

return x


class LayerNorm(nn.Cell):
""" LayerNorm """
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"):
super().__init__()
if data_format == "channels_first":
self.weight = ms.Parameter(ms.ops.ones(normalized_shape))
self.bias = ms.Parameter(ms.ops.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError()
self.normalized_shape = (normalized_shape,)
self.layer_norm = nn.LayerNorm(self.normalized_shape, gamma_init='ones', beta_init='zeros', epsilon=self.eps)

def construct(self, x):
if self.data_format == "channels_last":
# layer_norm = nn.LayerNorm()
# return ms.ops.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return self.layer_norm(x)
u = x.mean(1, keep_dims=True)
s = (x - u).pow(2).mean(1, keep_dims=True)
x = (x - u) / ms.ops.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x


class GRN(nn.Cell):
""" GRN """
def __init__(self, dim):
super().__init__()
self.gamma = ms.Parameter(ms.ops.zeros((1, 1, 1, dim)))
self.beta = ms.Parameter(ms.ops.zeros((1, 1, 1, dim)))

def construct(self, x):
Gx = ms.ops.norm(x, ord=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(axis=-1, keep_dims=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x


class ConvNextV2(nn.Cell):
""" ConvNextV2 """
def __init__(self, in_channels=3, num_classes=1000,
depth=None, dims=None,
drop_path_rate=0., head_init_scale=1.):
super().__init__()
if depth is None:
depth = [3, 3, 9, 3]
if dims is None:
dims = [96, 192, 384, 768]
self.depth = depth
self.downsample_layers = nn.SequentialCell()
stem = nn.SequentialCell(
nn.Conv2d(in_channels, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.SequentialCell(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2)
)
self.downsample_layers.append(downsample_layer)

self.stages = nn.SequentialCell()
dp_rates = ms.ops.linspace(0, drop_path_rate, sum(depth))
cur = 0
for i in range(4):
stage = nn.SequentialCell(
*[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depth[i])]
)
self.stages.append(stage)
cur += depth[i]

self.norm = nn.LayerNorm((dims[-1],), epsilon=1e-6)
self.head = nn.Dense(dims[-1], num_classes)

self.head.weight.set_data(self.head.weight.data * head_init_scale)
if self.head.bias is not None:
self.head.bias.set_data(self.head.bias.data * head_init_scale)

def construct(self, x):
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
x = self.norm(x.mean([-2, -1]))
x = self.head(x)
return x


def convnextv2_atto(**kwargs):
""" ConvNextV2-atto """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs)
return model


def convnextv2_femto(**kwargs):
""" ConvNextV2-femto """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs)
return model


def convnextv2_pico(**kwargs):
""" ConvNextV2-pico """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs)
return model


def convnextv2_nano(**kwargs):
""" ConvNextV2-nano """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[80, 160, 320, 640], **kwargs)
return model


def convnextv2_tiny(**kwargs):
""" ConvNextV2-tiny """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[96, 192, 384, 768], **kwargs)
return model


def convnextv2_base(**kwargs):
""" ConvNextV2-base """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[128, 256, 512, 1024], **kwargs)
return model


def convnextv2_large(**kwargs):
""" ConvNextV2-large """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[192, 384, 768, 1536], **kwargs)
return model


def convnextv2_huge(**kwargs):
""" ConvNextV2-huge """
model = ConvNextV2(depth=[2, 2, 6, 2], dims=[352, 704, 1408, 2816], **kwargs)
return model


if __name__ == "__main__":
convnextv2 = convnextv2_atto()
dummy_input = ms.ops.randn((1, 3, 224, 224))
output = convnextv2(dummy_input)
print(output.shape)

Loading…
Cancel
Save