You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

mainInformer.py 7.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. import argparse
  2. import os
  3. import mindspore
  4. import mindspore.context as context
  5. from mindspore.train.serialization import load_checkpoint, save_checkpoint
  6. from exp.exp_informer import Exp_Informer
  7. context.set_auto_parallel_context(enable_auto_memory=True)
  8. parser = argparse.ArgumentParser(description='[Informer] Long Sequences Forecasting')
  9. parser.add_argument('--model', type=str, required=True, default='informer', help='model of experiment, options: [informer, informerstack, informerlight(TBD)]')
  10. parser.add_argument('--data', type=str, required=True, default='ETTh1', help='data')
  11. parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
  12. parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
  13. parser.add_argument('--features', type=str, default='M', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
  14. parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
  15. parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
  16. parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
  17. parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of Informer encoder')
  18. parser.add_argument('--label_len', type=int, default=48, help='start token length of Informer decoder')
  19. parser.add_argument('--pred_len', type=int, default=24, help='prediction sequence length')
  20. # Informer decoder input: concat[start token series(label_len), zero padding series(pred_len)]
  21. parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
  22. parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
  23. parser.add_argument('--c_out', type=int, default=7, help='output size')
  24. parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
  25. parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
  26. parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
  27. parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
  28. parser.add_argument('--s_layers', type=str, default='3,2,1', help='num of stack encoder layers')
  29. parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
  30. parser.add_argument('--factor', type=int, default=5, help='probsparse attn factor')
  31. parser.add_argument('--padding', type=int, default=0, help='padding type')
  32. parser.add_argument('--distil', action='store_false', help='whether to use distilling in encoder, using this argument means not using distilling', default=True)
  33. parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
  34. parser.add_argument('--attn', type=str, default='prob', help='attention used in encoder, options:[prob, full]')
  35. parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')
  36. parser.add_argument('--activation', type=str, default='gelu', help='activation')
  37. parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
  38. parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
  39. parser.add_argument('--mix', action='store_false', help='use mix attention in generative decoder', default=True)
  40. parser.add_argument('--cols', type=str, nargs='+', help='certain cols from the data files as the input features')
  41. parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
  42. parser.add_argument('--itr', type=int, default=2, help='experiments times')
  43. parser.add_argument('--train_epochs', type=int, default=6, help='train epochs')
  44. parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
  45. parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
  46. parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
  47. parser = argparse.ArgumentParser()
  48. parser.add_argument('--des', type=str, default='test', help='exp description')
  49. parser.add_argument('--loss', type=str, default='mse', help='loss function')
  50. parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
  51. parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
  52. parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)
  53. parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
  54. parser.add_argument('--device_target', type=str, default='GPU', choices=['GPU', 'CPU'], help='device target')
  55. parser.add_argument('--device_id', type=int, default=0, help='device id')
  56. args = parser.parse_args()
  57. device_target = args.device_target
  58. device_id = args.device_id
  59. context.set_context(mode=context.GRAPH_MODE, device_target=device_target, device_id=device_id)
  60. data_parser = {
  61. 'ETTh1': {'data': 'ETTh1.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
  62. 'ETTh2': {'data': 'ETTh2.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
  63. 'ETTm1': {'data': 'ETTm1.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
  64. 'ETTm2': {'data': 'ETTm2.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
  65. 'WTH': {'data': 'WTH.csv', 'T': 'WetBulbCelsius', 'M': [12, 12, 12], 'S': [1, 1, 1], 'MS': [12, 12, 1]},
  66. 'ECL': {'data': 'ECL.csv', 'T': 'MT_320', 'M': [321, 321, 321], 'S': [1, 1, 1], 'MS': [321, 321, 1]},
  67. 'Solar': {'data': 'solar_AL.csv', 'T': 'POWER_136', 'M': [137, 137, 137], 'S': [1, 1, 1], 'MS': [137, 137, 1]},
  68. }
  69. if args.data in data_parser.keys():
  70. data_info = data_parser[args.data]
  71. args.data_path = data_info['data']
  72. args.target = data_info['T']
  73. args.enc_in, args.dec_in, args.c_out = data_info[args.features]
  74. args.s_layers = [int(s_l) for s_l in args.s_layers.replace(' ', '').split(',')]
  75. args.detail_freq = args.freq
  76. args.freq = args.freq[-1:]
  77. print('Args in experiment:')
  78. print(args)
  79. Exp = Exp_Informer
  80. for ii in range(args.itr):
  81. # setting record of experiments
  82. setting = '{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_at{}_fc{}_eb{}_dt{}_mx{}_{}_{}'.format(args.model, args.data, args.features,
  83. args.seq_len, args.label_len, args.pred_len,
  84. args.d_model, args.n_heads, args.e_layers, args.d_layers, args.d_ff, args.attn, args.factor,
  85. args.embed, args.distil, args.mix, args.des, ii)
  86. exp = Exp(args) # set experiments
  87. print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
  88. exp.train(setting)
  89. print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
  90. exp.test(setting)
  91. if args.do_predict:
  92. print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
  93. exp.predict(setting, True)

基于MindSpore的多模态股票价格预测系统研究 Informer,LSTM,RNN