|
- """
- ######################## train lenet example ########################
- train lenet and get network model files(.ckpt)
- """
- #!/usr/bin/python
- #coding=utf-8
-
- import os
- import argparse
- from config import mnist_cfg as cfg
- from dataset import create_dataset
- from lenet import LeNet5
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.common import set_seed
-
- parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
-
- parser.add_argument(
- '--device_target',
- type=str,
- default="Ascend",
- choices=['Ascend', 'CPU'],
- help='device where the code will be implemented (default: CPU),若要在启智平台上使用NPU,需要在启智平台训练界面上加上运行参数device_target=Ascend')
-
- parser.add_argument('--epoch_size',
- type=int,
- default=5,
- help='Training epochs.')
-
- set_seed(1)
-
- if __name__ == "__main__":
- args = parser.parse_args()
- print('args:')
- print(args)
-
- train_dir = '/cache/output'
- data_dir = '/cache/dataset'
-
- #注意:这里很重要,指定了训练所用的设备CPU还是Ascend NPU
- context.set_context(mode=context.GRAPH_MODE,
- device_target=args.device_target)
- #创建数据集
- ds_train = create_dataset(os.path.join(data_dir, "train"),
- cfg.batch_size)
- if ds_train.get_dataset_size() == 0:
- raise ValueError(
- "Please check dataset size > 0 and batch_size <= dataset size")
- #创建网络
- network = LeNet5(cfg.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
-
- if args.device_target != "Ascend":
- model = Model(network,
- net_loss,
- net_opt,
- metrics={"accuracy": Accuracy()})
- else:
- model = Model(network,
- net_loss,
- net_opt,
- metrics={"accuracy": Accuracy()},
- amp_level="O2")
-
- config_ck = CheckpointConfig(
- save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- #定义模型输出路径
- ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
- directory=train_dir,
- config=config_ck)
- #开始训练
- print("============== Starting Training ==============")
- epoch_size = cfg['epoch_size']
- if (args.epoch_size):
- epoch_size = args.epoch_size
- print('epoch_size is: ', epoch_size)
-
- model.train(epoch_size,
- ds_train,
- callbacks=[time_cb, ckpoint_cb,
- LossMonitor()])
-
- print("============== Finish Training ==============")
|