|
- from argparse import ArgumentParser
-
- import numpy as np
- import requests
-
- from mmdet.apis import inference_detector, init_detector, show_result_pyplot
- from mmdet.core import bbox2result
-
-
- def parse_args():
- parser = ArgumentParser()
- parser.add_argument('img', help='Image file')
- parser.add_argument('config', help='Config file')
- parser.add_argument('checkpoint', help='Checkpoint file')
- parser.add_argument('model_name', help='The model name in the server')
- parser.add_argument(
- '--inference-addr',
- default='127.0.0.1:8080',
- help='Address and port of the inference server')
- parser.add_argument(
- '--device', default='cuda:0', help='Device used for inference')
- parser.add_argument(
- '--score-thr', type=float, default=0.5, help='bbox score threshold')
- args = parser.parse_args()
- return args
-
-
- def parse_result(input, model_class):
- bbox = []
- label = []
- score = []
- for anchor in input:
- bbox.append(anchor['bbox'])
- label.append(model_class.index(anchor['class_name']))
- score.append([anchor['score']])
- bboxes = np.append(bbox, score, axis=1)
- labels = np.array(label)
- result = bbox2result(bboxes, labels, len(model_class))
- return result
-
-
- def main(args):
- # build the model from a config file and a checkpoint file
- model = init_detector(args.config, args.checkpoint, device=args.device)
- # test a single image
- model_result = inference_detector(model, args.img)
- for i, anchor_set in enumerate(model_result):
- anchor_set = anchor_set[anchor_set[:, 4] >= 0.5]
- model_result[i] = anchor_set
- # show the results
- show_result_pyplot(
- model,
- args.img,
- model_result,
- score_thr=args.score_thr,
- title='pytorch_result')
- url = 'http://' + args.inference_addr + '/predictions/' + args.model_name
- with open(args.img, 'rb') as image:
- response = requests.post(url, image)
- server_result = parse_result(response.json(), model.CLASSES)
- show_result_pyplot(
- model,
- args.img,
- server_result,
- score_thr=args.score_thr,
- title='server_result')
-
- for i in range(len(model.CLASSES)):
- assert np.allclose(model_result[i], server_result[i])
-
-
- if __name__ == '__main__':
- args = parse_args()
- main(args)
|