|
- # Copyright (c) OpenMMLab. All rights reserved.
- import torch
- from mmcv.runner import force_fp32
-
- from mmdet.core import images_to_levels
- from ..builder import HEADS
- from ..losses import carl_loss, isr_p
- from .retina_head import RetinaHead
-
-
- @HEADS.register_module()
- class PISARetinaHead(RetinaHead):
- """PISA Retinanet Head.
-
- The head owns the same structure with Retinanet Head, but differs in two
- aspects:
- 1. Importance-based Sample Reweighting Positive (ISR-P) is applied to
- change the positive loss weights.
- 2. Classification-aware regression loss is adopted as a third loss.
- """
-
- @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
- def loss(self,
- cls_scores,
- bbox_preds,
- gt_bboxes,
- gt_labels,
- img_metas,
- gt_bboxes_ignore=None):
- """Compute losses of the head.
-
- Args:
- cls_scores (list[Tensor]): Box scores for each scale level
- Has shape (N, num_anchors * num_classes, H, W)
- bbox_preds (list[Tensor]): Box energies / deltas for each scale
- level with shape (N, num_anchors * 4, H, W)
- gt_bboxes (list[Tensor]): Ground truth bboxes of each image
- with shape (num_obj, 4).
- gt_labels (list[Tensor]): Ground truth labels of each image
- with shape (num_obj, 4).
- img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- gt_bboxes_ignore (list[Tensor]): Ignored gt bboxes of each image.
- Default: None.
-
- Returns:
- dict: Loss dict, comprise classification loss, regression loss and
- carl loss.
- """
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
-
- device = cls_scores[0].device
-
- anchor_list, valid_flag_list = self.get_anchors(
- featmap_sizes, img_metas, device=device)
- label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
- cls_reg_targets = self.get_targets(
- anchor_list,
- valid_flag_list,
- gt_bboxes,
- img_metas,
- gt_bboxes_ignore_list=gt_bboxes_ignore,
- gt_labels_list=gt_labels,
- label_channels=label_channels,
- return_sampling_results=True)
- if cls_reg_targets is None:
- return None
- (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
- num_total_pos, num_total_neg, sampling_results_list) = cls_reg_targets
- num_total_samples = (
- num_total_pos + num_total_neg if self.sampling else num_total_pos)
-
- # anchor number of multi levels
- num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
- # concat all level anchors and flags to a single tensor
- concat_anchor_list = []
- for i in range(len(anchor_list)):
- concat_anchor_list.append(torch.cat(anchor_list[i]))
- all_anchor_list = images_to_levels(concat_anchor_list,
- num_level_anchors)
-
- num_imgs = len(img_metas)
- flatten_cls_scores = [
- cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, label_channels)
- for cls_score in cls_scores
- ]
- flatten_cls_scores = torch.cat(
- flatten_cls_scores, dim=1).reshape(-1,
- flatten_cls_scores[0].size(-1))
- flatten_bbox_preds = [
- bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
- for bbox_pred in bbox_preds
- ]
- flatten_bbox_preds = torch.cat(
- flatten_bbox_preds, dim=1).view(-1, flatten_bbox_preds[0].size(-1))
- flatten_labels = torch.cat(labels_list, dim=1).reshape(-1)
- flatten_label_weights = torch.cat(
- label_weights_list, dim=1).reshape(-1)
- flatten_anchors = torch.cat(all_anchor_list, dim=1).reshape(-1, 4)
- flatten_bbox_targets = torch.cat(
- bbox_targets_list, dim=1).reshape(-1, 4)
- flatten_bbox_weights = torch.cat(
- bbox_weights_list, dim=1).reshape(-1, 4)
-
- # Apply ISR-P
- isr_cfg = self.train_cfg.get('isr', None)
- if isr_cfg is not None:
- all_targets = (flatten_labels, flatten_label_weights,
- flatten_bbox_targets, flatten_bbox_weights)
- with torch.no_grad():
- all_targets = isr_p(
- flatten_cls_scores,
- flatten_bbox_preds,
- all_targets,
- flatten_anchors,
- sampling_results_list,
- bbox_coder=self.bbox_coder,
- loss_cls=self.loss_cls,
- num_class=self.num_classes,
- **self.train_cfg.isr)
- (flatten_labels, flatten_label_weights, flatten_bbox_targets,
- flatten_bbox_weights) = all_targets
-
- # For convenience we compute loss once instead separating by fpn level,
- # so that we don't need to separate the weights by level again.
- # The result should be the same
- losses_cls = self.loss_cls(
- flatten_cls_scores,
- flatten_labels,
- flatten_label_weights,
- avg_factor=num_total_samples)
- losses_bbox = self.loss_bbox(
- flatten_bbox_preds,
- flatten_bbox_targets,
- flatten_bbox_weights,
- avg_factor=num_total_samples)
- loss_dict = dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
-
- # CARL Loss
- carl_cfg = self.train_cfg.get('carl', None)
- if carl_cfg is not None:
- loss_carl = carl_loss(
- flatten_cls_scores,
- flatten_labels,
- flatten_bbox_preds,
- flatten_bbox_targets,
- self.loss_bbox,
- **self.train_cfg.carl,
- avg_factor=num_total_pos,
- sigmoid=True,
- num_class=self.num_classes)
- loss_dict.update(loss_carl)
-
- return loss_dict
|