|
- # Copyright (c) OpenMMLab. All rights reserved.
- import math
- import warnings
-
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from mmcv.cnn import (Conv2d, build_activation_layer, build_norm_layer,
- constant_init, normal_init, trunc_normal_init)
- from mmcv.cnn.bricks.drop import build_dropout
- from mmcv.cnn.bricks.transformer import MultiheadAttention
- from mmcv.cnn.utils.weight_init import trunc_normal_
- from mmcv.runner import (BaseModule, ModuleList, Sequential, _load_checkpoint,
- load_state_dict)
- from torch.nn.modules.utils import _pair as to_2tuple
-
- from ...utils import get_root_logger
- from ..builder import BACKBONES
- from ..utils import PatchEmbed, nchw_to_nlc, nlc_to_nchw, pvt_convert
-
-
- class MixFFN(BaseModule):
- """An implementation of MixFFN of PVT.
-
- The differences between MixFFN & FFN:
- 1. Use 1X1 Conv to replace Linear layer.
- 2. Introduce 3X3 Depth-wise Conv to encode positional information.
-
- Args:
- embed_dims (int): The feature dimension. Same as
- `MultiheadAttention`.
- feedforward_channels (int): The hidden dimension of FFNs.
- act_cfg (dict, optional): The activation config for FFNs.
- Default: dict(type='GELU').
- ffn_drop (float, optional): Probability of an element to be
- zeroed in FFN. Default 0.0.
- dropout_layer (obj:`ConfigDict`): The dropout_layer used
- when adding the shortcut.
- Default: None.
- use_conv (bool): If True, add 3x3 DWConv between two Linear layers.
- Defaults: False.
- init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
- Default: None.
- """
-
- def __init__(self,
- embed_dims,
- feedforward_channels,
- act_cfg=dict(type='GELU'),
- ffn_drop=0.,
- dropout_layer=None,
- use_conv=False,
- init_cfg=None):
- super(MixFFN, self).__init__(init_cfg=init_cfg)
-
- self.embed_dims = embed_dims
- self.feedforward_channels = feedforward_channels
- self.act_cfg = act_cfg
- activate = build_activation_layer(act_cfg)
-
- in_channels = embed_dims
- fc1 = Conv2d(
- in_channels=in_channels,
- out_channels=feedforward_channels,
- kernel_size=1,
- stride=1,
- bias=True)
- if use_conv:
- # 3x3 depth wise conv to provide positional encode information
- dw_conv = Conv2d(
- in_channels=feedforward_channels,
- out_channels=feedforward_channels,
- kernel_size=3,
- stride=1,
- padding=(3 - 1) // 2,
- bias=True,
- groups=feedforward_channels)
- fc2 = Conv2d(
- in_channels=feedforward_channels,
- out_channels=in_channels,
- kernel_size=1,
- stride=1,
- bias=True)
- drop = nn.Dropout(ffn_drop)
- layers = [fc1, activate, drop, fc2, drop]
- if use_conv:
- layers.insert(1, dw_conv)
- self.layers = Sequential(*layers)
- self.dropout_layer = build_dropout(
- dropout_layer) if dropout_layer else torch.nn.Identity()
-
- def forward(self, x, hw_shape, identity=None):
- out = nlc_to_nchw(x, hw_shape)
- out = self.layers(out)
- out = nchw_to_nlc(out)
- if identity is None:
- identity = x
- return identity + self.dropout_layer(out)
-
-
- class SpatialReductionAttention(MultiheadAttention):
- """An implementation of Spatial Reduction Attention of PVT.
-
- This module is modified from MultiheadAttention which is a module from
- mmcv.cnn.bricks.transformer.
-
- Args:
- embed_dims (int): The embedding dimension.
- num_heads (int): Parallel attention heads.
- attn_drop (float): A Dropout layer on attn_output_weights.
- Default: 0.0.
- proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
- Default: 0.0.
- dropout_layer (obj:`ConfigDict`): The dropout_layer used
- when adding the shortcut. Default: None.
- batch_first (bool): Key, Query and Value are shape of
- (batch, n, embed_dim)
- or (n, batch, embed_dim). Default: False.
- qkv_bias (bool): enable bias for qkv if True. Default: True.
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='LN').
- sr_ratio (int): The ratio of spatial reduction of Spatial Reduction
- Attention of PVT. Default: 1.
- init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
- Default: None.
- """
-
- def __init__(self,
- embed_dims,
- num_heads,
- attn_drop=0.,
- proj_drop=0.,
- dropout_layer=None,
- batch_first=True,
- qkv_bias=True,
- norm_cfg=dict(type='LN'),
- sr_ratio=1,
- init_cfg=None):
- super().__init__(
- embed_dims,
- num_heads,
- attn_drop,
- proj_drop,
- batch_first=batch_first,
- dropout_layer=dropout_layer,
- bias=qkv_bias,
- init_cfg=init_cfg)
-
- self.sr_ratio = sr_ratio
- if sr_ratio > 1:
- self.sr = Conv2d(
- in_channels=embed_dims,
- out_channels=embed_dims,
- kernel_size=sr_ratio,
- stride=sr_ratio)
- # The ret[0] of build_norm_layer is norm name.
- self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
-
- # handle the BC-breaking from https://github.com/open-mmlab/mmcv/pull/1418 # noqa
- from mmdet import mmcv_version, digit_version
- if mmcv_version < digit_version('1.3.17'):
- warnings.warn('The legacy version of forward function in'
- 'SpatialReductionAttention is deprecated in'
- 'mmcv>=1.3.17 and will no longer support in the'
- 'future. Please upgrade your mmcv.')
- self.forward = self.legacy_forward
-
- def forward(self, x, hw_shape, identity=None):
-
- x_q = x
- if self.sr_ratio > 1:
- x_kv = nlc_to_nchw(x, hw_shape)
- x_kv = self.sr(x_kv)
- x_kv = nchw_to_nlc(x_kv)
- x_kv = self.norm(x_kv)
- else:
- x_kv = x
-
- if identity is None:
- identity = x_q
-
- # Because the dataflow('key', 'query', 'value') of
- # ``torch.nn.MultiheadAttention`` is (num_query, batch,
- # embed_dims), We should adjust the shape of dataflow from
- # batch_first (batch, num_query, embed_dims) to num_query_first
- # (num_query ,batch, embed_dims), and recover ``attn_output``
- # from num_query_first to batch_first.
- if self.batch_first:
- x_q = x_q.transpose(0, 1)
- x_kv = x_kv.transpose(0, 1)
-
- out = self.attn(query=x_q, key=x_kv, value=x_kv)[0]
-
- if self.batch_first:
- out = out.transpose(0, 1)
-
- return identity + self.dropout_layer(self.proj_drop(out))
-
- def legacy_forward(self, x, hw_shape, identity=None):
- """multi head attention forward in mmcv version < 1.3.17."""
- x_q = x
- if self.sr_ratio > 1:
- x_kv = nlc_to_nchw(x, hw_shape)
- x_kv = self.sr(x_kv)
- x_kv = nchw_to_nlc(x_kv)
- x_kv = self.norm(x_kv)
- else:
- x_kv = x
-
- if identity is None:
- identity = x_q
-
- out = self.attn(query=x_q, key=x_kv, value=x_kv)[0]
-
- return identity + self.dropout_layer(self.proj_drop(out))
-
-
- class PVTEncoderLayer(BaseModule):
- """Implements one encoder layer in PVT.
-
- Args:
- embed_dims (int): The feature dimension.
- num_heads (int): Parallel attention heads.
- feedforward_channels (int): The hidden dimension for FFNs.
- drop_rate (float): Probability of an element to be zeroed.
- after the feed forward layer. Default: 0.0.
- attn_drop_rate (float): The drop out rate for attention layer.
- Default: 0.0.
- drop_path_rate (float): stochastic depth rate. Default: 0.0.
- qkv_bias (bool): enable bias for qkv if True.
- Default: True.
- act_cfg (dict): The activation config for FFNs.
- Default: dict(type='GELU').
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='LN').
- sr_ratio (int): The ratio of spatial reduction of Spatial Reduction
- Attention of PVT. Default: 1.
- use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN.
- Default: False.
- init_cfg (dict, optional): Initialization config dict.
- Default: None.
- """
-
- def __init__(self,
- embed_dims,
- num_heads,
- feedforward_channels,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.,
- qkv_bias=True,
- act_cfg=dict(type='GELU'),
- norm_cfg=dict(type='LN'),
- sr_ratio=1,
- use_conv_ffn=False,
- init_cfg=None):
- super(PVTEncoderLayer, self).__init__(init_cfg=init_cfg)
-
- # The ret[0] of build_norm_layer is norm name.
- self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
-
- self.attn = SpatialReductionAttention(
- embed_dims=embed_dims,
- num_heads=num_heads,
- attn_drop=attn_drop_rate,
- proj_drop=drop_rate,
- dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
- qkv_bias=qkv_bias,
- norm_cfg=norm_cfg,
- sr_ratio=sr_ratio)
-
- # The ret[0] of build_norm_layer is norm name.
- self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
-
- self.ffn = MixFFN(
- embed_dims=embed_dims,
- feedforward_channels=feedforward_channels,
- ffn_drop=drop_rate,
- dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
- use_conv=use_conv_ffn,
- act_cfg=act_cfg)
-
- def forward(self, x, hw_shape):
- x = self.attn(self.norm1(x), hw_shape, identity=x)
- x = self.ffn(self.norm2(x), hw_shape, identity=x)
-
- return x
-
-
- class AbsolutePositionEmbedding(BaseModule):
- """An implementation of the absolute position embedding in PVT.
-
- Args:
- pos_shape (int): The shape of the absolute position embedding.
- pos_dim (int): The dimension of the absolute position embedding.
- drop_rate (float): Probability of an element to be zeroed.
- Default: 0.0.
- """
-
- def __init__(self, pos_shape, pos_dim, drop_rate=0., init_cfg=None):
- super().__init__(init_cfg=init_cfg)
-
- if isinstance(pos_shape, int):
- pos_shape = to_2tuple(pos_shape)
- elif isinstance(pos_shape, tuple):
- if len(pos_shape) == 1:
- pos_shape = to_2tuple(pos_shape[0])
- assert len(pos_shape) == 2, \
- f'The size of image should have length 1 or 2, ' \
- f'but got {len(pos_shape)}'
- self.pos_shape = pos_shape
- self.pos_dim = pos_dim
-
- self.pos_embed = nn.Parameter(
- torch.zeros(1, pos_shape[0] * pos_shape[1], pos_dim))
- self.drop = nn.Dropout(p=drop_rate)
-
- def init_weights(self):
- trunc_normal_(self.pos_embed, std=0.02)
-
- def resize_pos_embed(self, pos_embed, input_shape, mode='bilinear'):
- """Resize pos_embed weights.
-
- Resize pos_embed using bilinear interpolate method.
-
- Args:
- pos_embed (torch.Tensor): Position embedding weights.
- input_shape (tuple): Tuple for (downsampled input image height,
- downsampled input image width).
- mode (str): Algorithm used for upsampling:
- ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
- ``'trilinear'``. Default: ``'bilinear'``.
-
- Return:
- torch.Tensor: The resized pos_embed of shape [B, L_new, C].
- """
- assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
- pos_h, pos_w = self.pos_shape
- pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
- pos_embed_weight = pos_embed_weight.reshape(
- 1, pos_h, pos_w, self.pos_dim).permute(0, 3, 1, 2).contiguous()
- pos_embed_weight = F.interpolate(
- pos_embed_weight, size=input_shape, mode=mode)
- pos_embed_weight = torch.flatten(pos_embed_weight,
- 2).transpose(1, 2).contiguous()
- pos_embed = pos_embed_weight
-
- return pos_embed
-
- def forward(self, x, hw_shape, mode='bilinear'):
- pos_embed = self.resize_pos_embed(self.pos_embed, hw_shape, mode)
- return self.drop(x + pos_embed)
-
-
- @BACKBONES.register_module()
- class PyramidVisionTransformer(BaseModule):
- """Pyramid Vision Transformer (PVT)
-
- Implementation of `Pyramid Vision Transformer: A Versatile Backbone for
- Dense Prediction without Convolutions
- <https://arxiv.org/pdf/2102.12122.pdf>`_.
-
- Args:
- pretrain_img_size (int | tuple[int]): The size of input image when
- pretrain. Defaults: 224.
- in_channels (int): Number of input channels. Default: 3.
- embed_dims (int): Embedding dimension. Default: 64.
- num_stags (int): The num of stages. Default: 4.
- num_layers (Sequence[int]): The layer number of each transformer encode
- layer. Default: [3, 4, 6, 3].
- num_heads (Sequence[int]): The attention heads of each transformer
- encode layer. Default: [1, 2, 5, 8].
- patch_sizes (Sequence[int]): The patch_size of each patch embedding.
- Default: [4, 2, 2, 2].
- strides (Sequence[int]): The stride of each patch embedding.
- Default: [4, 2, 2, 2].
- paddings (Sequence[int]): The padding of each patch embedding.
- Default: [0, 0, 0, 0].
- sr_ratios (Sequence[int]): The spatial reduction rate of each
- transformer encode layer. Default: [8, 4, 2, 1].
- out_indices (Sequence[int] | int): Output from which stages.
- Default: (0, 1, 2, 3).
- mlp_ratios (Sequence[int]): The ratio of the mlp hidden dim to the
- embedding dim of each transformer encode layer.
- Default: [8, 8, 4, 4].
- qkv_bias (bool): Enable bias for qkv if True. Default: True.
- drop_rate (float): Probability of an element to be zeroed.
- Default 0.0.
- attn_drop_rate (float): The drop out rate for attention layer.
- Default 0.0.
- drop_path_rate (float): stochastic depth rate. Default 0.1.
- use_abs_pos_embed (bool): If True, add absolute position embedding to
- the patch embedding. Defaults: True.
- use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN.
- Default: False.
- act_cfg (dict): The activation config for FFNs.
- Default: dict(type='GELU').
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='LN').
- pretrained (str, optional): model pretrained path. Default: None.
- convert_weights (bool): The flag indicates whether the
- pre-trained model is from the original repo. We may need
- to convert some keys to make it compatible.
- Default: True.
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None.
- """
-
- def __init__(self,
- pretrain_img_size=224,
- in_channels=3,
- embed_dims=64,
- num_stages=4,
- num_layers=[3, 4, 6, 3],
- num_heads=[1, 2, 5, 8],
- patch_sizes=[4, 2, 2, 2],
- strides=[4, 2, 2, 2],
- paddings=[0, 0, 0, 0],
- sr_ratios=[8, 4, 2, 1],
- out_indices=(0, 1, 2, 3),
- mlp_ratios=[8, 8, 4, 4],
- qkv_bias=True,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.1,
- use_abs_pos_embed=True,
- norm_after_stage=False,
- use_conv_ffn=False,
- act_cfg=dict(type='GELU'),
- norm_cfg=dict(type='LN', eps=1e-6),
- pretrained=None,
- convert_weights=True,
- init_cfg=None):
- super().__init__(init_cfg=init_cfg)
-
- self.convert_weights = convert_weights
- if isinstance(pretrain_img_size, int):
- pretrain_img_size = to_2tuple(pretrain_img_size)
- elif isinstance(pretrain_img_size, tuple):
- if len(pretrain_img_size) == 1:
- pretrain_img_size = to_2tuple(pretrain_img_size[0])
- assert len(pretrain_img_size) == 2, \
- f'The size of image should have length 1 or 2, ' \
- f'but got {len(pretrain_img_size)}'
-
- assert not (init_cfg and pretrained), \
- 'init_cfg and pretrained cannot be setting at the same time'
- if isinstance(pretrained, str):
- warnings.warn('DeprecationWarning: pretrained is deprecated, '
- 'please use "init_cfg" instead')
- self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
- elif pretrained is None:
- self.init_cfg = init_cfg
- else:
- raise TypeError('pretrained must be a str or None')
-
- self.embed_dims = embed_dims
-
- self.num_stages = num_stages
- self.num_layers = num_layers
- self.num_heads = num_heads
- self.patch_sizes = patch_sizes
- self.strides = strides
- self.sr_ratios = sr_ratios
- assert num_stages == len(num_layers) == len(num_heads) \
- == len(patch_sizes) == len(strides) == len(sr_ratios)
-
- self.out_indices = out_indices
- assert max(out_indices) < self.num_stages
- self.pretrained = pretrained
-
- # transformer encoder
- dpr = [
- x.item()
- for x in torch.linspace(0, drop_path_rate, sum(num_layers))
- ] # stochastic num_layer decay rule
-
- cur = 0
- self.layers = ModuleList()
- for i, num_layer in enumerate(num_layers):
- embed_dims_i = embed_dims * num_heads[i]
- patch_embed = PatchEmbed(
- in_channels=in_channels,
- embed_dims=embed_dims_i,
- kernel_size=patch_sizes[i],
- stride=strides[i],
- padding=paddings[i],
- bias=True,
- norm_cfg=norm_cfg)
-
- layers = ModuleList()
- if use_abs_pos_embed:
- pos_shape = pretrain_img_size // np.prod(patch_sizes[:i + 1])
- pos_embed = AbsolutePositionEmbedding(
- pos_shape=pos_shape,
- pos_dim=embed_dims_i,
- drop_rate=drop_rate)
- layers.append(pos_embed)
- layers.extend([
- PVTEncoderLayer(
- embed_dims=embed_dims_i,
- num_heads=num_heads[i],
- feedforward_channels=mlp_ratios[i] * embed_dims_i,
- drop_rate=drop_rate,
- attn_drop_rate=attn_drop_rate,
- drop_path_rate=dpr[cur + idx],
- qkv_bias=qkv_bias,
- act_cfg=act_cfg,
- norm_cfg=norm_cfg,
- sr_ratio=sr_ratios[i],
- use_conv_ffn=use_conv_ffn) for idx in range(num_layer)
- ])
- in_channels = embed_dims_i
- # The ret[0] of build_norm_layer is norm name.
- if norm_after_stage:
- norm = build_norm_layer(norm_cfg, embed_dims_i)[1]
- else:
- norm = nn.Identity()
- self.layers.append(ModuleList([patch_embed, layers, norm]))
- cur += num_layer
-
- def init_weights(self):
- logger = get_root_logger()
- if self.init_cfg is None:
- logger.warn(f'No pre-trained weights for '
- f'{self.__class__.__name__}, '
- f'training start from scratch')
- for m in self.modules():
- if isinstance(m, nn.Linear):
- trunc_normal_init(m, std=.02, bias=0.)
- elif isinstance(m, nn.LayerNorm):
- constant_init(m, 1.0)
- elif isinstance(m, nn.Conv2d):
- fan_out = m.kernel_size[0] * m.kernel_size[
- 1] * m.out_channels
- fan_out //= m.groups
- normal_init(m, 0, math.sqrt(2.0 / fan_out))
- elif isinstance(m, AbsolutePositionEmbedding):
- m.init_weights()
- else:
- assert 'checkpoint' in self.init_cfg, f'Only support ' \
- f'specify `Pretrained` in ' \
- f'`init_cfg` in ' \
- f'{self.__class__.__name__} '
- checkpoint = _load_checkpoint(
- self.init_cfg.checkpoint, logger=logger, map_location='cpu')
- logger.warn(f'Load pre-trained model for '
- f'{self.__class__.__name__} from original repo')
- if 'state_dict' in checkpoint:
- state_dict = checkpoint['state_dict']
- elif 'model' in checkpoint:
- state_dict = checkpoint['model']
- else:
- state_dict = checkpoint
- if self.convert_weights:
- # Because pvt backbones are not supported by mmcls,
- # so we need to convert pre-trained weights to match this
- # implementation.
- state_dict = pvt_convert(state_dict)
- load_state_dict(self, state_dict, strict=False, logger=logger)
-
- def forward(self, x):
- outs = []
-
- for i, layer in enumerate(self.layers):
- x, hw_shape = layer[0](x)
-
- for block in layer[1]:
- x = block(x, hw_shape)
- x = layer[2](x)
- x = nlc_to_nchw(x, hw_shape)
- if i in self.out_indices:
- outs.append(x)
-
- return outs
-
-
- @BACKBONES.register_module()
- class PyramidVisionTransformerV2(PyramidVisionTransformer):
- """Implementation of `PVTv2: Improved Baselines with Pyramid Vision
- Transformer <https://arxiv.org/pdf/2106.13797.pdf>`_."""
-
- def __init__(self, **kwargs):
- super(PyramidVisionTransformerV2, self).__init__(
- patch_sizes=[7, 3, 3, 3],
- paddings=[3, 1, 1, 1],
- use_abs_pos_embed=False,
- norm_after_stage=True,
- use_conv_ffn=True,
- **kwargs)
|